
Sum up to 16 terms of the series $\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots $ is
\[\begin{align}
& A.450 \\
& B.456 \\
& C.446 \\
& \text{D}.\text{None of these} \\
\end{align}\]
Answer
558.9k+ views
Hint: For solving the sum of 16 term series $\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots $ we will first find ${{n}^{th}}$ term of the series denoted by ${{T}_{n}}$. Then we will find a sum of n terms of series denoted by ${{S}_{n}}$ using $\sum{{{T}_{n}}}$. We will use following formula for solving this sum,
(1) ${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+\cdots \cdots +{{n}^{3}}=\sum{{{n}^{3}}}\text{ and }\sum{{{n}^{3}}}$ is equal to ${{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$.
(2) For an AP, $a,a+d,a+2d,\ldots \ldots a+\left( n-1 \right)d$ sum of n terms is given by $\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$.
(3) $\sum \left( {{a}_{n}}+{{b}_{n}} \right)=\sum {{a}_{n}}+\sum {{b}_{n}}$.
(4) Sum ${{1}^{2}}+{{2}^{2}}+{{3}^{2}}+\cdots \cdots +{{n}^{2}}=\sum{{{n}^{2}}}$ is equal to $\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$.
(5) Sum $1+2+3+\ldots \ldots n=\sum n$ is equal to $\dfrac{n\left( n+1 \right)}{2}$.
(6) Sum $1+1+1+\ldots \ldots n=\sum 1$ is equal to n.
Then we will put the value of n as 16 to get our final answer.
Complete step-by-step solution
Here, we are given the series as $\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots $.
Let us first find the ${{n}^{th}}$ term of the series, for this, we will find ${{n}^{th}}$ term of numerator and denominator separately.
For numerator, ${{n}^{th}}$ term will be ${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+\cdots \cdots +{{n}^{3}}=\sum{{{n}^{3}}}$ which is equal to $\sum{{{n}^{3}}}$.
As we know $\sum{{{n}^{3}}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$.
So, number of ${{n}^{th}}$ term is ${{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$.
For denominators, since all odd terms are adding, so ${{n}^{th}}$ term will be $1+3+5+\ldots \ldots +\left( 2n-1 \right)$.
As we can see, this is an AP with the first term (a) as 1 and a common difference d(3-1=5-3=2) as 2. So let us find the sum of n terms of this AP. Since the sum of n terms of an AP is given by ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$.
So, we get,
${{S}_{n}}=\dfrac{n}{2}\left( 2+\left( n-1 \right)2 \right)\Rightarrow \dfrac{n}{2}\left( 2n \right)={{n}^{2}}$.
Hence the denominator of ${{n}^{th}}$ term is ${{n}^{2}}$.
So our ${{n}^{th}}$ term of series denoted by ${{T}_{n}}$ is $\dfrac{{{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}}{{{n}^{2}}}\Rightarrow {{T}_{n}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4{{n}^{2}}}=\dfrac{{{\left( n+1 \right)}^{2}}}{4}$.
Since ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ so,
\[\begin{align}
& {{T}_{n}}=\dfrac{{{n}^{2}}+1+2n}{4}=\dfrac{{{n}^{2}}}{4}+\dfrac{1}{4}+\dfrac{2n}{4} \\
& \Rightarrow {{T}_{n}}=\dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4} \\
\end{align}\]
Now we need to find sum of n terms of a series where ${{n}^{th}}$ term is ${{T}_{n}}=\dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4}$.
So we just need to find $\sum{{{T}_{n}}}$.
Let us denote the sum of n terms by ${{S}_{n}}$. Hence,
${{S}_{n}}=\sum{{{T}_{n}}}\Rightarrow {{S}_{n}}=\sum{\left( \dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4} \right)}$.
As we know, $\sum \left( {{a}_{n}}+{{b}_{n}} \right)=\sum {{a}_{n}}+\sum {{b}_{n}}$ so we get:
\[\begin{align}
& {{S}_{n}}=\sum{\dfrac{{{n}^{2}}}{4}}+\sum{\dfrac{n}{2}}+\sum{\dfrac{1}{4}} \\
& \Rightarrow {{S}_{n}}=\dfrac{1}{4}\sum{{{n}^{2}}}+\dfrac{1}{2}\sum{n}+\dfrac{1}{4}\sum{1} \\
\end{align}\]
Now we know that, sum of squares of n terms is given by $\sum{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$.
Also, the sum of n terms is given by \[\sum{n}=\dfrac{n\left( n+1 \right)}{2}\].
And the sum of $1+1+1+\ldots \ldots n$ is given by $\sum 1=n$.
So putting all these values we get:
\[\begin{align}
& \Rightarrow {{S}_{n}}=\dfrac{1}{4}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\dfrac{1}{2}\left( \dfrac{n\left( n+1 \right)}{2} \right)+\dfrac{1}{4}\left( n \right) \\
& \Rightarrow {{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{24}+\dfrac{n\left( n+1 \right)}{4}+\dfrac{n}{4} \\
\end{align}\]
Now, we need to find sum of first 16 terms, so putting n = 16, we get:
\[\begin{align}
& \Rightarrow {{S}_{16}}=\dfrac{16\left( 16+1 \right)\left( 2\left( 16 \right)+1 \right)}{24}+\dfrac{16\left( 16+1 \right)}{4}+\dfrac{16}{4} \\
& \Rightarrow {{S}_{16}}=\dfrac{16\times 17\times 33}{24}+\dfrac{16\times 17}{4}+4 \\
\end{align}\]
Simplifying we get:
\[\begin{align}
& \Rightarrow {{S}_{16}}=374+68+4 \\
& \Rightarrow {{S}_{16}}=446 \\
\end{align}\]
Hence sum of 16 terms of $\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots $ is 446.
Hence option C is the correct answer.
Note: Students should know formulas of summation of some of the series such as $\sum n,\sum {{n}^{2}},\sum {{n}^{3}}$. Here we have not taken a sum of 16 sums directly as it would cause high calculations. Always try to make a general solution for the sum of a series and then put the value as 16. Here we have taken ${{S}_{n}}=\sum {{T}_{n}}$ which means we will take sum of all ${{T}_{n}}$ starting from 1 to n. Since ${{T}_{n}}=\dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4}$ which is equivalent to $\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots \dfrac{{{n}^{3}}}{\left( 2n-1 \right)}$.
(1) ${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+\cdots \cdots +{{n}^{3}}=\sum{{{n}^{3}}}\text{ and }\sum{{{n}^{3}}}$ is equal to ${{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$.
(2) For an AP, $a,a+d,a+2d,\ldots \ldots a+\left( n-1 \right)d$ sum of n terms is given by $\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$.
(3) $\sum \left( {{a}_{n}}+{{b}_{n}} \right)=\sum {{a}_{n}}+\sum {{b}_{n}}$.
(4) Sum ${{1}^{2}}+{{2}^{2}}+{{3}^{2}}+\cdots \cdots +{{n}^{2}}=\sum{{{n}^{2}}}$ is equal to $\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$.
(5) Sum $1+2+3+\ldots \ldots n=\sum n$ is equal to $\dfrac{n\left( n+1 \right)}{2}$.
(6) Sum $1+1+1+\ldots \ldots n=\sum 1$ is equal to n.
Then we will put the value of n as 16 to get our final answer.
Complete step-by-step solution
Here, we are given the series as $\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots $.
Let us first find the ${{n}^{th}}$ term of the series, for this, we will find ${{n}^{th}}$ term of numerator and denominator separately.
For numerator, ${{n}^{th}}$ term will be ${{1}^{3}}+{{2}^{3}}+{{3}^{3}}+\cdots \cdots +{{n}^{3}}=\sum{{{n}^{3}}}$ which is equal to $\sum{{{n}^{3}}}$.
As we know $\sum{{{n}^{3}}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$.
So, number of ${{n}^{th}}$ term is ${{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$.
For denominators, since all odd terms are adding, so ${{n}^{th}}$ term will be $1+3+5+\ldots \ldots +\left( 2n-1 \right)$.
As we can see, this is an AP with the first term (a) as 1 and a common difference d(3-1=5-3=2) as 2. So let us find the sum of n terms of this AP. Since the sum of n terms of an AP is given by ${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$.
So, we get,
${{S}_{n}}=\dfrac{n}{2}\left( 2+\left( n-1 \right)2 \right)\Rightarrow \dfrac{n}{2}\left( 2n \right)={{n}^{2}}$.
Hence the denominator of ${{n}^{th}}$ term is ${{n}^{2}}$.
So our ${{n}^{th}}$ term of series denoted by ${{T}_{n}}$ is $\dfrac{{{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}}{{{n}^{2}}}\Rightarrow {{T}_{n}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4{{n}^{2}}}=\dfrac{{{\left( n+1 \right)}^{2}}}{4}$.
Since ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ so,
\[\begin{align}
& {{T}_{n}}=\dfrac{{{n}^{2}}+1+2n}{4}=\dfrac{{{n}^{2}}}{4}+\dfrac{1}{4}+\dfrac{2n}{4} \\
& \Rightarrow {{T}_{n}}=\dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4} \\
\end{align}\]
Now we need to find sum of n terms of a series where ${{n}^{th}}$ term is ${{T}_{n}}=\dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4}$.
So we just need to find $\sum{{{T}_{n}}}$.
Let us denote the sum of n terms by ${{S}_{n}}$. Hence,
${{S}_{n}}=\sum{{{T}_{n}}}\Rightarrow {{S}_{n}}=\sum{\left( \dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4} \right)}$.
As we know, $\sum \left( {{a}_{n}}+{{b}_{n}} \right)=\sum {{a}_{n}}+\sum {{b}_{n}}$ so we get:
\[\begin{align}
& {{S}_{n}}=\sum{\dfrac{{{n}^{2}}}{4}}+\sum{\dfrac{n}{2}}+\sum{\dfrac{1}{4}} \\
& \Rightarrow {{S}_{n}}=\dfrac{1}{4}\sum{{{n}^{2}}}+\dfrac{1}{2}\sum{n}+\dfrac{1}{4}\sum{1} \\
\end{align}\]
Now we know that, sum of squares of n terms is given by $\sum{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$.
Also, the sum of n terms is given by \[\sum{n}=\dfrac{n\left( n+1 \right)}{2}\].
And the sum of $1+1+1+\ldots \ldots n$ is given by $\sum 1=n$.
So putting all these values we get:
\[\begin{align}
& \Rightarrow {{S}_{n}}=\dfrac{1}{4}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)+\dfrac{1}{2}\left( \dfrac{n\left( n+1 \right)}{2} \right)+\dfrac{1}{4}\left( n \right) \\
& \Rightarrow {{S}_{n}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{24}+\dfrac{n\left( n+1 \right)}{4}+\dfrac{n}{4} \\
\end{align}\]
Now, we need to find sum of first 16 terms, so putting n = 16, we get:
\[\begin{align}
& \Rightarrow {{S}_{16}}=\dfrac{16\left( 16+1 \right)\left( 2\left( 16 \right)+1 \right)}{24}+\dfrac{16\left( 16+1 \right)}{4}+\dfrac{16}{4} \\
& \Rightarrow {{S}_{16}}=\dfrac{16\times 17\times 33}{24}+\dfrac{16\times 17}{4}+4 \\
\end{align}\]
Simplifying we get:
\[\begin{align}
& \Rightarrow {{S}_{16}}=374+68+4 \\
& \Rightarrow {{S}_{16}}=446 \\
\end{align}\]
Hence sum of 16 terms of $\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots $ is 446.
Hence option C is the correct answer.
Note: Students should know formulas of summation of some of the series such as $\sum n,\sum {{n}^{2}},\sum {{n}^{3}}$. Here we have not taken a sum of 16 sums directly as it would cause high calculations. Always try to make a general solution for the sum of a series and then put the value as 16. Here we have taken ${{S}_{n}}=\sum {{T}_{n}}$ which means we will take sum of all ${{T}_{n}}$ starting from 1 to n. Since ${{T}_{n}}=\dfrac{{{n}^{2}}}{4}+\dfrac{n}{2}+\dfrac{1}{4}$ which is equivalent to $\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+\cdots \cdots \dfrac{{{n}^{3}}}{\left( 2n-1 \right)}$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

