
Sum of all the numbers that can be formed using all the digits $2,3,3,4,4,4$ is
(A) $22222200$
(B) $11111100$
(C) $55555500$
(D) None of these
Answer
567.9k+ views
Hint: For answering this question we will first derive the number of possible ways in which the digits can be arranged to form numbers and then calculate the number of times each digit appears and then sum up all of them.
Complete step-by-step solution
Now considering the question we need to find the sum of all the numbers that can be formed using all the digits $2, 3, 3, 4, 4, 4$.
The number of possible ways in which the digits $2,3,3,4,4,4$ can be arranged is $\dfrac{6!}{2!3!}$. That is simply we can form $60$ numbers using all the digits $2, 3, 3, 4,4, 4$.
Hence, each digit is assumed to be different would occur $\dfrac{60}{6}=10$ times at each of the $6$ places.
As $3$ occurs twice and $4$ occurs thrice, $3$ will occur $2\times 10=20$ times and $4$ will occur $3\times 10=30$ times.
Hence, the sum of the given digits at all places will be $4\times 30+3\times 20+2\times 10=200$.
Hence the required sum of all numbers that can be formed using $2,3,3,4,4,4$ is $\begin{align}
& 200\times {{10}^{5}}+200\times {{10}^{4}}+200\times {{10}^{3}}+200\times {{10}^{2}}+200\times {{10}^{1}}+200\times {{10}^{0}} \\
& \Rightarrow 200\left( {{10}^{5}}+{{10}^{4}}+{{10}^{3}}+{{10}^{2}}+{{10}^{1}}+{{10}^{0}} \right) \\
& \Rightarrow 200\left( 1+10+100+1000+10000+100000 \right) \\
& \Rightarrow 200\left( 1,11,111 \right) \\
& \Rightarrow 2,22,22,200 \\
\end{align}$ .
Hence, we can conclude that the sum of all the numbers that can be formed using all the digits $2,3,3,4,4,4$ is $22222200$.
Hence option A is the correct answer.
Note: While answering questions of this type we should be sure with the calculations and simplifications. If we had made a mistake while simplifying this step $200\times {{10}^{5}}+200\times {{10}^{4}}+200\times {{10}^{3}}+200\times {{10}^{2}}+200\times {{10}^{1}}+200\times {{10}^{0}}$ like in case if we had written $200\left( {{10}^{6}}+{{10}^{5}}+{{10}^{4}}+{{10}^{3}}+{{10}^{2}}+{{10}^{1}} \right)$ then we will end up having $\begin{align}
& \Rightarrow 200\left( 10+100+1000+10000+100000+1000000 \right) \\
& \Rightarrow 200\left( 11,11,110 \right) \\
& \Rightarrow 22,22,22,000 \\
\end{align}$.
We can say it is a complete wrong answer.
Complete step-by-step solution
Now considering the question we need to find the sum of all the numbers that can be formed using all the digits $2, 3, 3, 4, 4, 4$.
The number of possible ways in which the digits $2,3,3,4,4,4$ can be arranged is $\dfrac{6!}{2!3!}$. That is simply we can form $60$ numbers using all the digits $2, 3, 3, 4,4, 4$.
Hence, each digit is assumed to be different would occur $\dfrac{60}{6}=10$ times at each of the $6$ places.
As $3$ occurs twice and $4$ occurs thrice, $3$ will occur $2\times 10=20$ times and $4$ will occur $3\times 10=30$ times.
Hence, the sum of the given digits at all places will be $4\times 30+3\times 20+2\times 10=200$.
Hence the required sum of all numbers that can be formed using $2,3,3,4,4,4$ is $\begin{align}
& 200\times {{10}^{5}}+200\times {{10}^{4}}+200\times {{10}^{3}}+200\times {{10}^{2}}+200\times {{10}^{1}}+200\times {{10}^{0}} \\
& \Rightarrow 200\left( {{10}^{5}}+{{10}^{4}}+{{10}^{3}}+{{10}^{2}}+{{10}^{1}}+{{10}^{0}} \right) \\
& \Rightarrow 200\left( 1+10+100+1000+10000+100000 \right) \\
& \Rightarrow 200\left( 1,11,111 \right) \\
& \Rightarrow 2,22,22,200 \\
\end{align}$ .
Hence, we can conclude that the sum of all the numbers that can be formed using all the digits $2,3,3,4,4,4$ is $22222200$.
Hence option A is the correct answer.
Note: While answering questions of this type we should be sure with the calculations and simplifications. If we had made a mistake while simplifying this step $200\times {{10}^{5}}+200\times {{10}^{4}}+200\times {{10}^{3}}+200\times {{10}^{2}}+200\times {{10}^{1}}+200\times {{10}^{0}}$ like in case if we had written $200\left( {{10}^{6}}+{{10}^{5}}+{{10}^{4}}+{{10}^{3}}+{{10}^{2}}+{{10}^{1}} \right)$ then we will end up having $\begin{align}
& \Rightarrow 200\left( 10+100+1000+10000+100000+1000000 \right) \\
& \Rightarrow 200\left( 11,11,110 \right) \\
& \Rightarrow 22,22,22,000 \\
\end{align}$.
We can say it is a complete wrong answer.
Recently Updated Pages
Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

How can you explain that CCl4 has no dipole moment class 11 chemistry CBSE

Which will undergo SN2 reaction fastest among the following class 11 chemistry CBSE

The values of mass m for which the 100 kg block does class 11 physics CBSE

Why are voluntary muscles called striated muscles class 11 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

