Answer
Verified
495.6k+ views
Hint: The coordinates of centroid of a triangle with vertices $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$ is given as $\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$ .
Statement-1: The given triangle is $\Delta ABC$. We will consider the vertices of $\Delta ABC$ to be given as $A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\ and C\left( {{x}_{3}},{{y}_{3}} \right)$.
Now , from the diagram , we can see that $P,Q,R$ are the midpoints of sides $AB,AC$ and $BC$ respectively .
Now , we know that the midpoint of line joining $\left( {{a}_{1}},{{b}_{1}} \right)\ and \left( {{a}_{2}},{{b}_{2}} \right)$ is given as
$\left( \dfrac{{{a}_{1}}+{{a}_{2}}}{2},\dfrac{{{b}_{1}}+{{b}_{2}}}{2} \right)$
So , midpoint of $AB$ i.e., $P$ is given as
\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\]
But , in the question , it is given that coordinates of $P$ are $\left( 0,0 \right)$.
So , $\dfrac{{{x}_{1}}+{{x}_{2}}}{2}=0\Rightarrow {{x}_{1}}+{{x}_{2}}=0.........\left( i \right)$
And $\dfrac{{{y}_{1}}+{{y}_{2}}}{2}=0\Rightarrow {{y}_{1}}+{{y}_{2}}=0.........\left( ii \right)$
Again , midpoint of $AC$ is $Q$. So , the coordinates of $Q$ are given as
\[\left( \dfrac{{{x}_{1}}+{{x}_{3}}}{2},\dfrac{{{y}_{1}}+{{y}_{3}}}{2} \right)\]
But in the question, coordinates of $Q$ are given as $\left( 1,2 \right)$.
So , $\begin{align}
& \dfrac{{{x}_{1}}+{{x}_{3}}}{2}=1\Rightarrow {{x}_{1}}+{{x}_{3}}=2......\left( iii \right) \\
& \\
\end{align}$
And $\dfrac{{{y}_{1}}+{{y}_{2}}}{2}=2\Rightarrow {{y}_{1}}+{{y}_{3}}=4........\left( iv \right)$
Again , midpoint of $BC$ is $R$. So , the coordinates of $R$ are given as
\[\left( \dfrac{{{x}_{2}}+{{x}_{3}}}{2},\dfrac{{{y}_{2}}+{{y}_{3}}}{2} \right)\]
But in the question, coordinates of $R$ are given as $\left( -3,4 \right)$.
So, $\dfrac{{{x}_{2}}+{{x}_{3}}}{2}=-3\Rightarrow {{x}_{2}}+{{x}_{3}}=-6..........\left( v \right)$
And $\dfrac{{{y}_{2}}+{{y}_{3}}}{2}=4\Rightarrow {{y}_{2}}+{{y}_{3}}=8..........\left( vi \right)$
Now , we will add the equations $\left( i \right),\left( iii \right)$ and $\left( v \right)$.
On adding equations $\left( i \right),\left( iii \right)$ and $\left( v \right)$ , we get
$\begin{align}
& {{x}_{1}}+{{x}_{2}}+{{x}_{1}}+{{x}_{3}}+{{x}_{2}}+{{x}_{3}}=0+2+\left( -6 \right) \\
& \Rightarrow 2\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)=-4 \\
& \Rightarrow \left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)=-2...........\left( vii \right) \\
\end{align}$
Now , we will add the equations $\left( ii \right),\left( iv \right)$and $\left( vi \right)$.
On adding equations $\left( ii \right),\left( iv \right)$and $\left( vi \right)$, we get
$\begin{align}
& {{y}_{1}}+{{y}_{2}}+{{y}_{1}}+{{y}_{3}}+{{y}_{2}}+{{y}_{3}}=0+4+8 \\
& \Rightarrow 2\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)=12 \\
& \Rightarrow \left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)=6...................\left( viii \right) \\
\end{align}$
Now , we know the coordinates of centroid of a triangle with vertices $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$ is given as $\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$ .
So , the coordinates of centroid of $\Delta ABC$is
$G\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$
But , from equations $\left( vii \right)$and $\left( viii \right)$, we have
${{x}_{1}}+{{x}_{2}}+{{x}_{3}}=-2$ and ${{\text{y}}_{1}}+{{y}_{2}}+{{y}_{3}}=6\text{ }$
So , coordinates of the centroid of $\Delta ABC$are $G\left( \dfrac{-2}{3},2 \right)$ .
Hence , the statement $\left( 1 \right)$ is true.
Statement $2$: Let the vertices of triangle be $A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\And C\left( {{x}_{3}},{{y}_{3}} \right)$
So the midpoint of $AB$ is $D\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$ , $\text{BC}$ is $\text{E}\left( \dfrac{{{x}_{2}}+{{x}_{3}}}{2},\dfrac{{{y}_{2}}+{{y}_{3}}}{2} \right)$ and $AC$ is $\text{F}\left( \dfrac{{{x}_{1}}+{{x}_{3}}}{2},\dfrac{{{y}_{1}}+{{y}_{3}}}{2} \right)$.
Now , we will find the centroid of $\Delta ABC$.
We know the coordinates of centroid of a triangle with vertices $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$ is given as $\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$.
So , the centroid of $\Delta ABC$ is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\] .
Now , we will find the centroid of $\Delta DEF$.
The centroid of $\Delta DEF$ is given as $\left( \dfrac{\dfrac{{{x}_{1}}+{{x}_{2}}}{2}+\dfrac{{{x}_{2}}+{{x}_{3}}}{2}+\dfrac{{{x}_{3}}+{{x}_{1}}}{2}}{3},\dfrac{\dfrac{{{y}_{1}}+{{y}_{2}}}{2}+\dfrac{{{y}_{3}}+{{y}_{2}}}{2}+\dfrac{{{y}_{1}}+{{y}_{3}}}{2}}{3} \right)$
$=\left( \dfrac{\dfrac{2\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)}{2}}{3},\dfrac{\dfrac{2\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)}{2}}{3} \right)$
$=\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$
= centroid of $\Delta ABC$.
Hence , the statement $\left( 2 \right)$ is true.
So , we can conclude that statement $\left( 1 \right)$ is true, statement $\left( 2 \right)$ is true and statement $\left( 2 \right)$ is a correct explanation for statement$\left( 1 \right)$.
So, (1) Statement $\left( 1 \right)$ is true, statement $\left( 2 \right)$ is true; statement $\left( 2 \right)$ is a correct explanation for statement $\left( 1 \right)$.
Note: The midpoint of line joining the points $\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)$ is given as:
$\left( \dfrac{\left( {{x}_{1}}+{{x}_{2}} \right)}{2},\dfrac{\left( {{y}_{1}}+{{y}_{2}} \right)}{2} \right)$ and not $\left( \dfrac{\left( {{x}_{1}}-{{x}_{2}} \right)}{2},\dfrac{\left( {{y}_{1}}-{{y}_{2}} \right)}{2} \right)$ . Students often get confused between the two. Due to this confusion , they generally end up getting a wrong answer . So , such mistakes should be avoided .
Statement-1: The given triangle is $\Delta ABC$. We will consider the vertices of $\Delta ABC$ to be given as $A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\ and C\left( {{x}_{3}},{{y}_{3}} \right)$.
Now , from the diagram , we can see that $P,Q,R$ are the midpoints of sides $AB,AC$ and $BC$ respectively .
Now , we know that the midpoint of line joining $\left( {{a}_{1}},{{b}_{1}} \right)\ and \left( {{a}_{2}},{{b}_{2}} \right)$ is given as
$\left( \dfrac{{{a}_{1}}+{{a}_{2}}}{2},\dfrac{{{b}_{1}}+{{b}_{2}}}{2} \right)$
So , midpoint of $AB$ i.e., $P$ is given as
\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\]
But , in the question , it is given that coordinates of $P$ are $\left( 0,0 \right)$.
So , $\dfrac{{{x}_{1}}+{{x}_{2}}}{2}=0\Rightarrow {{x}_{1}}+{{x}_{2}}=0.........\left( i \right)$
And $\dfrac{{{y}_{1}}+{{y}_{2}}}{2}=0\Rightarrow {{y}_{1}}+{{y}_{2}}=0.........\left( ii \right)$
Again , midpoint of $AC$ is $Q$. So , the coordinates of $Q$ are given as
\[\left( \dfrac{{{x}_{1}}+{{x}_{3}}}{2},\dfrac{{{y}_{1}}+{{y}_{3}}}{2} \right)\]
But in the question, coordinates of $Q$ are given as $\left( 1,2 \right)$.
So , $\begin{align}
& \dfrac{{{x}_{1}}+{{x}_{3}}}{2}=1\Rightarrow {{x}_{1}}+{{x}_{3}}=2......\left( iii \right) \\
& \\
\end{align}$
And $\dfrac{{{y}_{1}}+{{y}_{2}}}{2}=2\Rightarrow {{y}_{1}}+{{y}_{3}}=4........\left( iv \right)$
Again , midpoint of $BC$ is $R$. So , the coordinates of $R$ are given as
\[\left( \dfrac{{{x}_{2}}+{{x}_{3}}}{2},\dfrac{{{y}_{2}}+{{y}_{3}}}{2} \right)\]
But in the question, coordinates of $R$ are given as $\left( -3,4 \right)$.
So, $\dfrac{{{x}_{2}}+{{x}_{3}}}{2}=-3\Rightarrow {{x}_{2}}+{{x}_{3}}=-6..........\left( v \right)$
And $\dfrac{{{y}_{2}}+{{y}_{3}}}{2}=4\Rightarrow {{y}_{2}}+{{y}_{3}}=8..........\left( vi \right)$
Now , we will add the equations $\left( i \right),\left( iii \right)$ and $\left( v \right)$.
On adding equations $\left( i \right),\left( iii \right)$ and $\left( v \right)$ , we get
$\begin{align}
& {{x}_{1}}+{{x}_{2}}+{{x}_{1}}+{{x}_{3}}+{{x}_{2}}+{{x}_{3}}=0+2+\left( -6 \right) \\
& \Rightarrow 2\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)=-4 \\
& \Rightarrow \left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)=-2...........\left( vii \right) \\
\end{align}$
Now , we will add the equations $\left( ii \right),\left( iv \right)$and $\left( vi \right)$.
On adding equations $\left( ii \right),\left( iv \right)$and $\left( vi \right)$, we get
$\begin{align}
& {{y}_{1}}+{{y}_{2}}+{{y}_{1}}+{{y}_{3}}+{{y}_{2}}+{{y}_{3}}=0+4+8 \\
& \Rightarrow 2\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)=12 \\
& \Rightarrow \left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)=6...................\left( viii \right) \\
\end{align}$
Now , we know the coordinates of centroid of a triangle with vertices $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$ is given as $\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$ .
So , the coordinates of centroid of $\Delta ABC$is
$G\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$
But , from equations $\left( vii \right)$and $\left( viii \right)$, we have
${{x}_{1}}+{{x}_{2}}+{{x}_{3}}=-2$ and ${{\text{y}}_{1}}+{{y}_{2}}+{{y}_{3}}=6\text{ }$
So , coordinates of the centroid of $\Delta ABC$are $G\left( \dfrac{-2}{3},2 \right)$ .
Hence , the statement $\left( 1 \right)$ is true.
Statement $2$: Let the vertices of triangle be $A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\And C\left( {{x}_{3}},{{y}_{3}} \right)$
So the midpoint of $AB$ is $D\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)$ , $\text{BC}$ is $\text{E}\left( \dfrac{{{x}_{2}}+{{x}_{3}}}{2},\dfrac{{{y}_{2}}+{{y}_{3}}}{2} \right)$ and $AC$ is $\text{F}\left( \dfrac{{{x}_{1}}+{{x}_{3}}}{2},\dfrac{{{y}_{1}}+{{y}_{3}}}{2} \right)$.
Now , we will find the centroid of $\Delta ABC$.
We know the coordinates of centroid of a triangle with vertices $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$ is given as $\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$.
So , the centroid of $\Delta ABC$ is \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\] .
Now , we will find the centroid of $\Delta DEF$.
The centroid of $\Delta DEF$ is given as $\left( \dfrac{\dfrac{{{x}_{1}}+{{x}_{2}}}{2}+\dfrac{{{x}_{2}}+{{x}_{3}}}{2}+\dfrac{{{x}_{3}}+{{x}_{1}}}{2}}{3},\dfrac{\dfrac{{{y}_{1}}+{{y}_{2}}}{2}+\dfrac{{{y}_{3}}+{{y}_{2}}}{2}+\dfrac{{{y}_{1}}+{{y}_{3}}}{2}}{3} \right)$
$=\left( \dfrac{\dfrac{2\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)}{2}}{3},\dfrac{\dfrac{2\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)}{2}}{3} \right)$
$=\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$
= centroid of $\Delta ABC$.
Hence , the statement $\left( 2 \right)$ is true.
So , we can conclude that statement $\left( 1 \right)$ is true, statement $\left( 2 \right)$ is true and statement $\left( 2 \right)$ is a correct explanation for statement$\left( 1 \right)$.
So, (1) Statement $\left( 1 \right)$ is true, statement $\left( 2 \right)$ is true; statement $\left( 2 \right)$ is a correct explanation for statement $\left( 1 \right)$.
Note: The midpoint of line joining the points $\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)$ is given as:
$\left( \dfrac{\left( {{x}_{1}}+{{x}_{2}} \right)}{2},\dfrac{\left( {{y}_{1}}+{{y}_{2}} \right)}{2} \right)$ and not $\left( \dfrac{\left( {{x}_{1}}-{{x}_{2}} \right)}{2},\dfrac{\left( {{y}_{1}}-{{y}_{2}} \right)}{2} \right)$ . Students often get confused between the two. Due to this confusion , they generally end up getting a wrong answer . So , such mistakes should be avoided .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it