
Statement – I: The value of the integral $\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}} $is equal to$\dfrac{\pi }{6}$.
Statement – II: $\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} = \int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}} $
$
{\text{A}}{\text{. Statement - I is true, Statement - II is true; Statement - II is not a correct explanation for Statement - I}} \\
{\text{B}}{\text{. Statement - I is true, Statement - II is false}} \\
{\text{C}}{\text{. Statement - I is false, Statement - II is true}} \\
{\text{D}}{\text{. Statement - I is true, Statement - II is true; Statement - II is a correct explanation for Statement - I}} \\
$
Answer
569.4k+ views
Hint: In order to determine the correct answer we compute statements I and II first and then verify which of the options holds true. We solve the given statements using the formula of property of definite integrals, which says$\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} = \int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}} $. We refer to the concept of definite integrals to solve and verify the both statements.
Complete step-by-step solution:
Given data,
$\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}} $
$\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} = \int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}} $
Let us consider the integral function given in statement I to be ‘X’
$ \Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}} {\text{ - - - - }}\left( 1 \right)$
Now according to the property of definite integrals we know that an integral function of the form $\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} $can be expressed as$\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}} $.
I.e., $\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} = \int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}} $
This is Statement II itself, hence Statement – II is true.
Let us apply this property on equation – (1), we get
$\Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan }}\left( {\dfrac{\pi }{2} - {\text{x}}} \right)} }}} \\
\Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{cot x}}} }}} \\
\Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{\sqrt {{\text{tan x}}} }}{{1 + \sqrt {{\text{tan x}}} }}{\text{dx}}} {\text{ - - - }}\left( 2 \right) \\ $
Adding equations (1) and (2) we get
$\Rightarrow 2{\text{X = }}\int_{\pi /6}^{\pi /3} {\left[ {\dfrac{{\sqrt {{\text{tan x}}} }}{{1 + \sqrt {{\text{tan x}}} }} + \dfrac{1}{{1 + \sqrt {{\text{tan x}}} }}} \right]{\text{dx}}} \\
\Rightarrow 2{\text{X = }}\int_{\pi /6}^{\pi /3} {{\text{dx}}} \\
\Rightarrow 2{\text{X = }}\left[ {\text{x}} \right]_{\pi /6}^{\pi /3} \\
\Rightarrow 2{\text{X = }}\dfrac{\pi }{6} \\
\Rightarrow {\text{X = }}\dfrac{\pi }{{12}} \\ $
Hence we get $\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}} = \dfrac{\pi }{{12}}$
Therefore the statement is false.
Hence we get Statement – I is false, Statement – II is true.
Option C is the correct answer.
Note: In order to solve this type of question the key is to know the concepts of integration and definite integrals. Once we identify the statement – II is an identity, it is true. Then we use the same to compute the answer of integral in statement I without even simplifying the integral. General knowledge of how to perform integration and substitute limits later is required to perform integration problems.
Complete step-by-step solution:
Given data,
$\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}} $
$\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} = \int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}} $
Let us consider the integral function given in statement I to be ‘X’
$ \Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}} {\text{ - - - - }}\left( 1 \right)$
Now according to the property of definite integrals we know that an integral function of the form $\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} $can be expressed as$\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}} $.
I.e., $\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} = \int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}} $
This is Statement II itself, hence Statement – II is true.
Let us apply this property on equation – (1), we get
$\Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan }}\left( {\dfrac{\pi }{2} - {\text{x}}} \right)} }}} \\
\Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{cot x}}} }}} \\
\Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{\sqrt {{\text{tan x}}} }}{{1 + \sqrt {{\text{tan x}}} }}{\text{dx}}} {\text{ - - - }}\left( 2 \right) \\ $
Adding equations (1) and (2) we get
$\Rightarrow 2{\text{X = }}\int_{\pi /6}^{\pi /3} {\left[ {\dfrac{{\sqrt {{\text{tan x}}} }}{{1 + \sqrt {{\text{tan x}}} }} + \dfrac{1}{{1 + \sqrt {{\text{tan x}}} }}} \right]{\text{dx}}} \\
\Rightarrow 2{\text{X = }}\int_{\pi /6}^{\pi /3} {{\text{dx}}} \\
\Rightarrow 2{\text{X = }}\left[ {\text{x}} \right]_{\pi /6}^{\pi /3} \\
\Rightarrow 2{\text{X = }}\dfrac{\pi }{6} \\
\Rightarrow {\text{X = }}\dfrac{\pi }{{12}} \\ $
Hence we get $\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}} = \dfrac{\pi }{{12}}$
Therefore the statement is false.
Hence we get Statement – I is false, Statement – II is true.
Option C is the correct answer.
Note: In order to solve this type of question the key is to know the concepts of integration and definite integrals. Once we identify the statement – II is an identity, it is true. Then we use the same to compute the answer of integral in statement I without even simplifying the integral. General knowledge of how to perform integration and substitute limits later is required to perform integration problems.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

