Answer
Verified
464.7k+ views
Hint: We will solve this in a simpler way. Here the interval is closed that means for f(x) = 13 the value of x can neither be less than 1 nor be greater than 2. And we will check this by putting values of x as 1 and 2 in the given function and also by using the mean value theorem.
Complete step-by-step answer:
Step-1
We have \[f(x) = {x^3} + \cos \pi x + 7\]
In the interval of [1,2],
Step-2
$f(1) = {1^3} + \cos \pi + 7$
$ \Rightarrow f(1) = 1 + 1 + 7$
$ \Rightarrow f(1) = 9$……………(1)
And $f(2) = {2^3} + \cos 2\pi + 7$
Or, $f(2) = 8 + 1 + 7$
Or, $f(2) = 16$………..(2)
Step-3
From above two value we get to know that $f(1) < f(x) = 13 < f(2)$
So, from this we get to know that \[f(x) = 13\] has a solution in the interval of (1,2).
Step-4
For\[f(x) = {x^3} + \cos \pi x + 7\] to be continuous f’(x) must be greater than 0.
For that,
$f(c) = \dfrac{{f(2) - f(1)}}{{2 - 1}}$
$f(c) = \dfrac{{16 - 9}}{{2 - 1}}$
$f(c) = 7$
Step-5
Again differentiating f(x) we get,
$f'(x) = 3{x^2} - \pi \sin \pi x$
Step-6
We know that,
$f'(x) = 3{x^2} - \pi \sin \pi x = f(c)$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x = 7$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x > 0$, for all x belongs to closed [1,2]
Step-7
Hence, f(x) is a continuous function at [1,2].
F(x) is a strictly increasing function.
Therefore for \[f(x) = 13\], it has exactly one solution in the closed interval of [1,2].
So, the correct answer is “Option A”.
Note: Mean value theorem- The mean value theorem states that if a function f is continuous on the closed interval of [a, b ] and differentiable on the open interval ( a, b ), then there exist a point C in the interval (a, b ) such that f’(c) is equal to the functions average rate of change over closed interval [a, b ].
Difference between open interval and closed interval is, an open interval does not include its limit points while closed interval does.
Complete step-by-step answer:
Step-1
We have \[f(x) = {x^3} + \cos \pi x + 7\]
In the interval of [1,2],
Step-2
$f(1) = {1^3} + \cos \pi + 7$
$ \Rightarrow f(1) = 1 + 1 + 7$
$ \Rightarrow f(1) = 9$……………(1)
And $f(2) = {2^3} + \cos 2\pi + 7$
Or, $f(2) = 8 + 1 + 7$
Or, $f(2) = 16$………..(2)
Step-3
From above two value we get to know that $f(1) < f(x) = 13 < f(2)$
So, from this we get to know that \[f(x) = 13\] has a solution in the interval of (1,2).
Step-4
For\[f(x) = {x^3} + \cos \pi x + 7\] to be continuous f’(x) must be greater than 0.
For that,
$f(c) = \dfrac{{f(2) - f(1)}}{{2 - 1}}$
$f(c) = \dfrac{{16 - 9}}{{2 - 1}}$
$f(c) = 7$
Step-5
Again differentiating f(x) we get,
$f'(x) = 3{x^2} - \pi \sin \pi x$
Step-6
We know that,
$f'(x) = 3{x^2} - \pi \sin \pi x = f(c)$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x = 7$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x > 0$, for all x belongs to closed [1,2]
Step-7
Hence, f(x) is a continuous function at [1,2].
F(x) is a strictly increasing function.
Therefore for \[f(x) = 13\], it has exactly one solution in the closed interval of [1,2].
So, the correct answer is “Option A”.
Note: Mean value theorem- The mean value theorem states that if a function f is continuous on the closed interval of [a, b ] and differentiable on the open interval ( a, b ), then there exist a point C in the interval (a, b ) such that f’(c) is equal to the functions average rate of change over closed interval [a, b ].
Difference between open interval and closed interval is, an open interval does not include its limit points while closed interval does.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE