
State true or false.
Let\[f(x) = {x^3} + \cos \pi x + 7\], then \[f(x) = 13\] has exactly one solution in the interval [1,2].
A. True
B. False
Answer
593.7k+ views
Hint: We will solve this in a simpler way. Here the interval is closed that means for f(x) = 13 the value of x can neither be less than 1 nor be greater than 2. And we will check this by putting values of x as 1 and 2 in the given function and also by using the mean value theorem.
Complete step-by-step answer:
Step-1
We have \[f(x) = {x^3} + \cos \pi x + 7\]
In the interval of [1,2],
Step-2
$f(1) = {1^3} + \cos \pi + 7$
$ \Rightarrow f(1) = 1 + 1 + 7$
$ \Rightarrow f(1) = 9$……………(1)
And $f(2) = {2^3} + \cos 2\pi + 7$
Or, $f(2) = 8 + 1 + 7$
Or, $f(2) = 16$………..(2)
Step-3
From above two value we get to know that $f(1) < f(x) = 13 < f(2)$
So, from this we get to know that \[f(x) = 13\] has a solution in the interval of (1,2).
Step-4
For\[f(x) = {x^3} + \cos \pi x + 7\] to be continuous f’(x) must be greater than 0.
For that,
$f(c) = \dfrac{{f(2) - f(1)}}{{2 - 1}}$
$f(c) = \dfrac{{16 - 9}}{{2 - 1}}$
$f(c) = 7$
Step-5
Again differentiating f(x) we get,
$f'(x) = 3{x^2} - \pi \sin \pi x$
Step-6
We know that,
$f'(x) = 3{x^2} - \pi \sin \pi x = f(c)$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x = 7$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x > 0$, for all x belongs to closed [1,2]
Step-7
Hence, f(x) is a continuous function at [1,2].
F(x) is a strictly increasing function.
Therefore for \[f(x) = 13\], it has exactly one solution in the closed interval of [1,2].
So, the correct answer is “Option A”.
Note: Mean value theorem- The mean value theorem states that if a function f is continuous on the closed interval of [a, b ] and differentiable on the open interval ( a, b ), then there exist a point C in the interval (a, b ) such that f’(c) is equal to the functions average rate of change over closed interval [a, b ].
Difference between open interval and closed interval is, an open interval does not include its limit points while closed interval does.
Complete step-by-step answer:
Step-1
We have \[f(x) = {x^3} + \cos \pi x + 7\]
In the interval of [1,2],
Step-2
$f(1) = {1^3} + \cos \pi + 7$
$ \Rightarrow f(1) = 1 + 1 + 7$
$ \Rightarrow f(1) = 9$……………(1)
And $f(2) = {2^3} + \cos 2\pi + 7$
Or, $f(2) = 8 + 1 + 7$
Or, $f(2) = 16$………..(2)
Step-3
From above two value we get to know that $f(1) < f(x) = 13 < f(2)$
So, from this we get to know that \[f(x) = 13\] has a solution in the interval of (1,2).
Step-4
For\[f(x) = {x^3} + \cos \pi x + 7\] to be continuous f’(x) must be greater than 0.
For that,
$f(c) = \dfrac{{f(2) - f(1)}}{{2 - 1}}$
$f(c) = \dfrac{{16 - 9}}{{2 - 1}}$
$f(c) = 7$
Step-5
Again differentiating f(x) we get,
$f'(x) = 3{x^2} - \pi \sin \pi x$
Step-6
We know that,
$f'(x) = 3{x^2} - \pi \sin \pi x = f(c)$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x = 7$
Or, $f'(x) = 3{x^2} - \pi \sin \pi x > 0$, for all x belongs to closed [1,2]
Step-7
Hence, f(x) is a continuous function at [1,2].
F(x) is a strictly increasing function.
Therefore for \[f(x) = 13\], it has exactly one solution in the closed interval of [1,2].
So, the correct answer is “Option A”.
Note: Mean value theorem- The mean value theorem states that if a function f is continuous on the closed interval of [a, b ] and differentiable on the open interval ( a, b ), then there exist a point C in the interval (a, b ) such that f’(c) is equal to the functions average rate of change over closed interval [a, b ].
Difference between open interval and closed interval is, an open interval does not include its limit points while closed interval does.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

