State the second law of thermodynamics in terms of the entropy of the universe.
Answer
282.3k+ views
Hint :Entropy is a measurable physical property that is most often associated with a state of chaos, randomness, or ambiguity. The word and definition are used in a wide range of fields, from classical thermodynamics, where it was first known, to statistical physics' microscopic explanation of existence, and knowledge theory's principles.
Complete Step By Step Answer:
The definition of entropy as a physical property of a thermodynamic system is established by the second law of thermodynamics. Despite obeying the requirement of energy conservation defined in the first law of thermodynamics, entropy forecasts the course of spontaneous processes and decides if they are irreversible or impossible.
Aside from the necessity of not violating the conservation of energy, which is expressed in the first law of thermodynamics, entropy predicts that such processes are irreversible or impossible.
The second law of thermodynamics states that the entropy of isolated systems left to their own devices cannot decrease with time because they always arrive at a state of thermodynamic equilibrium, where the entropy is highest.
In the course of any random (natural) transition, the entropy of the universe (system + surroundings) increases $ (\Delta {S_{universe}} > 0) $ . The universe's energy is conserved, but its entropy is still increasing in every natural or random phase.
The total entropy of the Universe was $ S{\text{ }} = {\text{ }}{10^{88}}{k_B} $ at the time of the Big Bang, with radiation accounting for almost all of the entropy. The entropy of the Universe today, on the other hand, is approximately a quadrillion times larger: $ S{\text{ }} = {\text{ }}{10^{103}}{k_B} $ .
Note :
Theoretical physicists assume that once entropy reaches its limit, heat in the system will be distributed uniformly. This means that there would be no more space for available energy, or heat, in the Universe, and it would die of 'heat death.' Simply put, the Universe's mechanical motion will come to a halt.
Complete Step By Step Answer:
The definition of entropy as a physical property of a thermodynamic system is established by the second law of thermodynamics. Despite obeying the requirement of energy conservation defined in the first law of thermodynamics, entropy forecasts the course of spontaneous processes and decides if they are irreversible or impossible.
Aside from the necessity of not violating the conservation of energy, which is expressed in the first law of thermodynamics, entropy predicts that such processes are irreversible or impossible.
The second law of thermodynamics states that the entropy of isolated systems left to their own devices cannot decrease with time because they always arrive at a state of thermodynamic equilibrium, where the entropy is highest.
In the course of any random (natural) transition, the entropy of the universe (system + surroundings) increases $ (\Delta {S_{universe}} > 0) $ . The universe's energy is conserved, but its entropy is still increasing in every natural or random phase.
The total entropy of the Universe was $ S{\text{ }} = {\text{ }}{10^{88}}{k_B} $ at the time of the Big Bang, with radiation accounting for almost all of the entropy. The entropy of the Universe today, on the other hand, is approximately a quadrillion times larger: $ S{\text{ }} = {\text{ }}{10^{103}}{k_B} $ .
Note :
Theoretical physicists assume that once entropy reaches its limit, heat in the system will be distributed uniformly. This means that there would be no more space for available energy, or heat, in the Universe, and it would die of 'heat death.' Simply put, the Universe's mechanical motion will come to a halt.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
