Answer
Verified
417.9k+ views
Hint:We are to write the formula for moment of inertia of a solid sphere and a hollow sphere. First know the meaning of the moment of inertia. Then recall the formula for moment of inertia of a solid sphere and a hollow sphere, write down the formula by stating each term of the formula.
Complete answer:
First let us know what moment of inertia is. Moment of inertia is a quantity that expresses a body’s tendency to resist angular acceleration.Now, let us write the formula for the moment of inertia of a solid sphere. The moment of inertia for a solid sphere is a,
\[{\left( {M.I} \right)_{{\text{solid}}\,{\text{sphere}}}} = \dfrac{2}{5}M{R^2}\]
where \[M\] is the mass of the solid sphere and \[R\] is the radius of the solid sphere.
Now, we will write the formula for the moment of inertia of a hollow sphere. The moment of inertia of a hollow sphere is,
\[{\left( {M.I} \right)_{{\text{hollow}}\,{\text{sphere}}}} = \dfrac{2}{3}M{R^2}\]
where \[M\] is the mass of the hollow sphere and \[R\] is the radius of the hollow sphere.
Therefore, the formula for moment of inertia for solid and hollow sphere is \[\dfrac{2}{5}M{R^2}\] and \[\dfrac{2}{3}M{R^2}\] respectively.
Note: The formulas of moment of inertia of some important shapes should always be remembered which are the moment of inertia of the rectangle plate, solid and hollow cylinder, rod, solid and hollow sphere, circular ring. There are also two important theorems of finding moment of inertia about an axis, which are parallel axis theorem and perpendicular axis theorem.
Complete answer:
First let us know what moment of inertia is. Moment of inertia is a quantity that expresses a body’s tendency to resist angular acceleration.Now, let us write the formula for the moment of inertia of a solid sphere. The moment of inertia for a solid sphere is a,
\[{\left( {M.I} \right)_{{\text{solid}}\,{\text{sphere}}}} = \dfrac{2}{5}M{R^2}\]
where \[M\] is the mass of the solid sphere and \[R\] is the radius of the solid sphere.
Now, we will write the formula for the moment of inertia of a hollow sphere. The moment of inertia of a hollow sphere is,
\[{\left( {M.I} \right)_{{\text{hollow}}\,{\text{sphere}}}} = \dfrac{2}{3}M{R^2}\]
where \[M\] is the mass of the hollow sphere and \[R\] is the radius of the hollow sphere.
Therefore, the formula for moment of inertia for solid and hollow sphere is \[\dfrac{2}{5}M{R^2}\] and \[\dfrac{2}{3}M{R^2}\] respectively.
Note: The formulas of moment of inertia of some important shapes should always be remembered which are the moment of inertia of the rectangle plate, solid and hollow cylinder, rod, solid and hollow sphere, circular ring. There are also two important theorems of finding moment of inertia about an axis, which are parallel axis theorem and perpendicular axis theorem.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths