
State the formula for moment of inertia of a solid sphere and hollow sphere about its diameter.
Answer
551.7k+ views
Hint:We are to write the formula for moment of inertia of a solid sphere and a hollow sphere. First know the meaning of the moment of inertia. Then recall the formula for moment of inertia of a solid sphere and a hollow sphere, write down the formula by stating each term of the formula.
Complete answer:
First let us know what moment of inertia is. Moment of inertia is a quantity that expresses a body’s tendency to resist angular acceleration.Now, let us write the formula for the moment of inertia of a solid sphere. The moment of inertia for a solid sphere is a,
\[{\left( {M.I} \right)_{{\text{solid}}\,{\text{sphere}}}} = \dfrac{2}{5}M{R^2}\]
where \[M\] is the mass of the solid sphere and \[R\] is the radius of the solid sphere.
Now, we will write the formula for the moment of inertia of a hollow sphere. The moment of inertia of a hollow sphere is,
\[{\left( {M.I} \right)_{{\text{hollow}}\,{\text{sphere}}}} = \dfrac{2}{3}M{R^2}\]
where \[M\] is the mass of the hollow sphere and \[R\] is the radius of the hollow sphere.
Therefore, the formula for moment of inertia for solid and hollow sphere is \[\dfrac{2}{5}M{R^2}\] and \[\dfrac{2}{3}M{R^2}\] respectively.
Note: The formulas of moment of inertia of some important shapes should always be remembered which are the moment of inertia of the rectangle plate, solid and hollow cylinder, rod, solid and hollow sphere, circular ring. There are also two important theorems of finding moment of inertia about an axis, which are parallel axis theorem and perpendicular axis theorem.
Complete answer:
First let us know what moment of inertia is. Moment of inertia is a quantity that expresses a body’s tendency to resist angular acceleration.Now, let us write the formula for the moment of inertia of a solid sphere. The moment of inertia for a solid sphere is a,
\[{\left( {M.I} \right)_{{\text{solid}}\,{\text{sphere}}}} = \dfrac{2}{5}M{R^2}\]
where \[M\] is the mass of the solid sphere and \[R\] is the radius of the solid sphere.
Now, we will write the formula for the moment of inertia of a hollow sphere. The moment of inertia of a hollow sphere is,
\[{\left( {M.I} \right)_{{\text{hollow}}\,{\text{sphere}}}} = \dfrac{2}{3}M{R^2}\]
where \[M\] is the mass of the hollow sphere and \[R\] is the radius of the hollow sphere.
Therefore, the formula for moment of inertia for solid and hollow sphere is \[\dfrac{2}{5}M{R^2}\] and \[\dfrac{2}{3}M{R^2}\] respectively.
Note: The formulas of moment of inertia of some important shapes should always be remembered which are the moment of inertia of the rectangle plate, solid and hollow cylinder, rod, solid and hollow sphere, circular ring. There are also two important theorems of finding moment of inertia about an axis, which are parallel axis theorem and perpendicular axis theorem.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

