
What is the standard form of \[y = {\left( {2x - 3} \right)^2}\]?
Answer
493.2k+ views
Hint: We can see that this is the quadratic equation. But this is not in its standard form which is given as: \[y = a{x^2} + bx + c\]. So, to convert it into its standard form we will expand the term in the RHS using the formula for \[{\left( {a - b} \right)^2}\].
Formula used:
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step by step answer:
Given equation:
\[y = {\left( {2x - 3} \right)^2}\]
Now to get it in the standard form we will expand the RHS term using the formula \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]. So, we get;
\[ \Rightarrow y = {\left( {2x} \right)^2} - 2\left( {2x} \right)3 + {3^2}\]
Solving we get;
\[ \Rightarrow y = 4{x^2} - 12x + 9\]
This is in the standard form i.e., \[y = a{x^2} + bx + c\], with \[a = 4,b = - 12,c = 9\].
Note:
For the above equation we can find the roots by equating the equation to zero. So, we have;
\[y = 4{x^2} - 12x + 9 = 0\]
\[ \Rightarrow 4{x^2} - 12x + 9 = 0\]
Splitting the middle term, we get;
\[ \Rightarrow 4{x^2} - 6x - 6x + 9 = 0\]
Taking the common we get;
\[ \Rightarrow 2x\left( {2x - 3} \right) - 3\left( {2x - 3} \right) = 0\]
Further taking common we get;
\[ \Rightarrow \left( {2x - 3} \right)\left( {2x - 3} \right) = 0\]
\[ \Rightarrow x = \dfrac{2}{3}\]
Formula used:
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step by step answer:
Given equation:
\[y = {\left( {2x - 3} \right)^2}\]
Now to get it in the standard form we will expand the RHS term using the formula \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]. So, we get;
\[ \Rightarrow y = {\left( {2x} \right)^2} - 2\left( {2x} \right)3 + {3^2}\]
Solving we get;
\[ \Rightarrow y = 4{x^2} - 12x + 9\]
This is in the standard form i.e., \[y = a{x^2} + bx + c\], with \[a = 4,b = - 12,c = 9\].
Note:
For the above equation we can find the roots by equating the equation to zero. So, we have;
\[y = 4{x^2} - 12x + 9 = 0\]
\[ \Rightarrow 4{x^2} - 12x + 9 = 0\]
Splitting the middle term, we get;
\[ \Rightarrow 4{x^2} - 6x - 6x + 9 = 0\]
Taking the common we get;
\[ \Rightarrow 2x\left( {2x - 3} \right) - 3\left( {2x - 3} \right) = 0\]
Further taking common we get;
\[ \Rightarrow \left( {2x - 3} \right)\left( {2x - 3} \right) = 0\]
\[ \Rightarrow x = \dfrac{2}{3}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

