Answer
Verified
407.4k+ views
Hint:In the given question, we have been asked to solve\[\ln \left( x \right)-4\ln 3=\ln \left( \dfrac{5}{x} \right)\]. In order to solve the question for the value of ‘x’, first we apply the property of logarithm which states that \[a\ln b=\ln \left( {{b}^{a}} \right)\]and later by applying the quotient property of logarithmic function we will simplify further. Then to eliminate the log function we need to convert the logarithmic equation into the exponential equation and solve the equation further in a way we solve the general equation.
Formula used:
● The property of logarithm, states that \[a\ln b=\ln \left( {{b}^{a}} \right)\].
● The quotient property of logarithm which states that \[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\].
Complete step by step solution:
We have given that,
\[\ln \left( x \right)-4\ln 3=\ln \left( \dfrac{5}{x} \right)\]
Using the property of logarithm, i.e.
\[a\ln b=\ln \left( {{b}^{a}} \right)\]
Applying the property, we get
\[\ln \left( x \right)-\ln \left( {{3}^{4}} \right)=\ln \left( \dfrac{5}{x} \right)\]
Using the quotient property of logarithm, i.e.
\[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\]
Applying the quotient property of log, we get
\[\Rightarrow \ln \left( \dfrac{x}{{{3}^{4}}} \right)=\ln \left( \dfrac{5}{x} \right)\]
To eliminate log function or to cancel out the log function, we raise ‘e’ to the power log.
Converting the logarithmic equation into exponential form, we get
\[\Rightarrow {{e}^{\ln \left( \dfrac{x}{{{3}^{4}}} \right)}}={{e}^{\ln \left( \dfrac{5}{x} \right)}}\]
As we know that, \[{{e}^{\ln \left( x \right)}}=x\]
Thus,
\[\Rightarrow \dfrac{x}{{{3}^{4}}}=\dfrac{5}{x}\]
Cross multiplication in the above equation, we get
\[\Rightarrow {{x}^{2}}=5\times {{3}^{4}}\]
Simplifying the above equation, we get
\[\Rightarrow x=\pm \sqrt{5\times {{3}^{4}}}=\pm \sqrt{5}\times {{3}^{2}}\]
Therefore,
\[\Rightarrow x=+\sqrt{5}\times {{3}^{2}}=9\sqrt{5}\] and \[x=-\sqrt{5}\times {{3}^{2}}=-9\sqrt{5}\]
As the log function cannot take negative values, so x = \[-9\sqrt{5}\] is not a solution.
Thus, the possible value of ‘x’ is \[9\sqrt{5}\] .
It is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always require to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations. Students should always remember that natural log and the exponential functions are the inverse of each other, which means that if we raise the exponential function by the natural log of x, then only we would be able to find the value of ‘x’.
Formula used:
● The property of logarithm, states that \[a\ln b=\ln \left( {{b}^{a}} \right)\].
● The quotient property of logarithm which states that \[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\].
Complete step by step solution:
We have given that,
\[\ln \left( x \right)-4\ln 3=\ln \left( \dfrac{5}{x} \right)\]
Using the property of logarithm, i.e.
\[a\ln b=\ln \left( {{b}^{a}} \right)\]
Applying the property, we get
\[\ln \left( x \right)-\ln \left( {{3}^{4}} \right)=\ln \left( \dfrac{5}{x} \right)\]
Using the quotient property of logarithm, i.e.
\[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\]
Applying the quotient property of log, we get
\[\Rightarrow \ln \left( \dfrac{x}{{{3}^{4}}} \right)=\ln \left( \dfrac{5}{x} \right)\]
To eliminate log function or to cancel out the log function, we raise ‘e’ to the power log.
Converting the logarithmic equation into exponential form, we get
\[\Rightarrow {{e}^{\ln \left( \dfrac{x}{{{3}^{4}}} \right)}}={{e}^{\ln \left( \dfrac{5}{x} \right)}}\]
As we know that, \[{{e}^{\ln \left( x \right)}}=x\]
Thus,
\[\Rightarrow \dfrac{x}{{{3}^{4}}}=\dfrac{5}{x}\]
Cross multiplication in the above equation, we get
\[\Rightarrow {{x}^{2}}=5\times {{3}^{4}}\]
Simplifying the above equation, we get
\[\Rightarrow x=\pm \sqrt{5\times {{3}^{4}}}=\pm \sqrt{5}\times {{3}^{2}}\]
Therefore,
\[\Rightarrow x=+\sqrt{5}\times {{3}^{2}}=9\sqrt{5}\] and \[x=-\sqrt{5}\times {{3}^{2}}=-9\sqrt{5}\]
As the log function cannot take negative values, so x = \[-9\sqrt{5}\] is not a solution.
Thus, the possible value of ‘x’ is \[9\sqrt{5}\] .
It is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always require to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations. Students should always remember that natural log and the exponential functions are the inverse of each other, which means that if we raise the exponential function by the natural log of x, then only we would be able to find the value of ‘x’.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths