Answer
Verified
407.1k+ views
Hint: Substitution Method:
In this method from the given two equations of two variables, we have to substitute the equation of any one variable from one of the equations and then substitute it in the other one such that the second equation becomes an equation of one variable and thereby we can solve for that one variable.
So by using any of the above definitions we can solve the given pair of linear equations.
Complete step by step solution:
Given
$
y = 4x - 1.......................\left( i \right) \\
y = 2x - 5.......................\left( {ii} \right) \\
$
Now we are using the substitution method which is one of the algebraic methods, as given above to solve the question.
So by using the above definition, we can say that both (i) and (ii) are equations of $y$ so we can equate
(i) and (ii) to find the value of $x$.
Now equating (i) and (ii), we get:
$
\Rightarrow 4x - 1 = 2x - 5 \\
\Rightarrow 4x - 2x = 1 - 5 \\
\Rightarrow 2x = - 4 \\
\Rightarrow x = - \dfrac{4}{2} \\
\Rightarrow x = - 2..........................\left( {iii} \right) \\
$
Now to get the value of $y$ we have to substitute (iii) in either (i) or (ii).
So on substituting it in (i) we get:
$
\Rightarrow y = 2x - 5 \\
\Rightarrow y = 2\left( { - 2} \right) - 5 \\
\Rightarrow y = - 4 - 5 \\
\Rightarrow y = - 9......................\left( {iv} \right) \\
$
Therefore on solving $y = 4x - 1\;{\text{and}}\;y = 2x - 5$ by substitution method we get $x = - 2\;{\text{and}}\;{\text{y = }} - 9.$
Additional Information:
A given pair of linear equations can be solved either by graphical or algebraic method. The algebraic method is of three types:
1. Substitution Method
2. Elimination Method
3. Cross Multiplication Method
Note:
While solving a pair of linear equations one should take care of following things:
We need to express the two linear equations in two different variables, we can solve them either by substitution, elimination, cross multiplication method or by graphical method. We can also check the validation of the ‘x’ and ‘y’ values by putting them in the given equations and checking whether it satisfies mathematically or not.
In this method from the given two equations of two variables, we have to substitute the equation of any one variable from one of the equations and then substitute it in the other one such that the second equation becomes an equation of one variable and thereby we can solve for that one variable.
So by using any of the above definitions we can solve the given pair of linear equations.
Complete step by step solution:
Given
$
y = 4x - 1.......................\left( i \right) \\
y = 2x - 5.......................\left( {ii} \right) \\
$
Now we are using the substitution method which is one of the algebraic methods, as given above to solve the question.
So by using the above definition, we can say that both (i) and (ii) are equations of $y$ so we can equate
(i) and (ii) to find the value of $x$.
Now equating (i) and (ii), we get:
$
\Rightarrow 4x - 1 = 2x - 5 \\
\Rightarrow 4x - 2x = 1 - 5 \\
\Rightarrow 2x = - 4 \\
\Rightarrow x = - \dfrac{4}{2} \\
\Rightarrow x = - 2..........................\left( {iii} \right) \\
$
Now to get the value of $y$ we have to substitute (iii) in either (i) or (ii).
So on substituting it in (i) we get:
$
\Rightarrow y = 2x - 5 \\
\Rightarrow y = 2\left( { - 2} \right) - 5 \\
\Rightarrow y = - 4 - 5 \\
\Rightarrow y = - 9......................\left( {iv} \right) \\
$
Therefore on solving $y = 4x - 1\;{\text{and}}\;y = 2x - 5$ by substitution method we get $x = - 2\;{\text{and}}\;{\text{y = }} - 9.$
Additional Information:
A given pair of linear equations can be solved either by graphical or algebraic method. The algebraic method is of three types:
1. Substitution Method
2. Elimination Method
3. Cross Multiplication Method
Note:
While solving a pair of linear equations one should take care of following things:
We need to express the two linear equations in two different variables, we can solve them either by substitution, elimination, cross multiplication method or by graphical method. We can also check the validation of the ‘x’ and ‘y’ values by putting them in the given equations and checking whether it satisfies mathematically or not.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE