Answer
Verified
425.4k+ views
Hint: Suppose we have a quadratic equation ${{x}^{2}}+bx+c=0$. Then we add a term ${{\left( \dfrac{b}{2} \right)}^{2}}$ on both sides of the equation to obtain a perfect square that consists of x. This is how we use the completing square method.
Complete step-by-step solution:
The given equation is a quadratic equation in one variable. Quadratic equation is an equation in which the degree of the polynomial involved in the equation is equal to 2 (i.e. the higher power of the variable is 2).
To solve a quadratic equation means to find the value of the variable for which it satisfies the given equation. There are many ways to solve a quadratic equation in one variable. One of those ways is completing the square method.
In the completing square method we try to prepare a perfect square of the given equation.
Suppose we have a quadratic equation ${{x}^{2}}+bx+c=0$, then we add a term ${{\left( \dfrac{b}{2} \right)}^{2}}$ on both sides of the equation.
Therefore, we get that ${{x}^{2}}+bx+{{\left( \dfrac{b}{2} \right)}^{2}}+c={{\left( \dfrac{b}{2} \right)}^{2}}$
This equation can be further written as ${{x}^{2}}+bx+{{\left( \dfrac{b}{2} \right)}^{2}}={{\left( \dfrac{b}{2} \right)}^{2}}-c$ ….. (i)
Here, we can see that the expression ${{x}^{2}}+bx+{{\left( \dfrac{b}{2} \right)}^{2}}$ forms a perfect square such that ${{x}^{2}}+bx+{{\left( \dfrac{b}{2} \right)}^{2}}={{\left( x+\dfrac{b}{2} \right)}^{2}}$
Then substitute this value in equation (i).
$\Rightarrow {{\left( x+\dfrac{b}{2} \right)}^{2}}={{\left( \dfrac{b}{2} \right)}^{2}}-c$
Therefore, we can obtain a perfect square in this way.
Let us now perform the same method for the given equation.
Add ${{\left( -\dfrac{5}{2} \right)}^{2}}=\dfrac{25}{4}$ on both sides of the equation ${{x}^{2}}-5x+\dfrac{25}{4}+1=\dfrac{25}{4}$
$\Rightarrow {{\left( x-\dfrac{5}{2} \right)}^{2}}=\dfrac{25}{4}-1$
$\Rightarrow {{\left( x-\dfrac{5}{2} \right)}^{2}}=\dfrac{21}{4}$
Now, we can take square roots on both sides.
$\Rightarrow \left( x-\dfrac{5}{2} \right)=\pm \sqrt{\dfrac{21}{4}}$
$\Rightarrow x-\dfrac{5}{2}=\pm \dfrac{\sqrt{21}}{2}$
$\Rightarrow x=\dfrac{5\pm \sqrt{21}}{2}$
Then, this means that $x=\dfrac{5+\sqrt{21}}{2}$ or $x=\dfrac{5-\sqrt{21}}{2}$.
Note: When we have a quadratic equation in the form of $a{{x}^{2}}+bx+c=0$, we have to add the term $\dfrac{1}{a}{{\left( \dfrac{b}{2} \right)}^{2}}$ on both the sides of the equation.
Otherwise, we can divide the whole equation by a factor ‘a’ and then add ${{\left( \dfrac{b}{2} \right)}^{2}}$ on both sides.
Complete step-by-step solution:
The given equation is a quadratic equation in one variable. Quadratic equation is an equation in which the degree of the polynomial involved in the equation is equal to 2 (i.e. the higher power of the variable is 2).
To solve a quadratic equation means to find the value of the variable for which it satisfies the given equation. There are many ways to solve a quadratic equation in one variable. One of those ways is completing the square method.
In the completing square method we try to prepare a perfect square of the given equation.
Suppose we have a quadratic equation ${{x}^{2}}+bx+c=0$, then we add a term ${{\left( \dfrac{b}{2} \right)}^{2}}$ on both sides of the equation.
Therefore, we get that ${{x}^{2}}+bx+{{\left( \dfrac{b}{2} \right)}^{2}}+c={{\left( \dfrac{b}{2} \right)}^{2}}$
This equation can be further written as ${{x}^{2}}+bx+{{\left( \dfrac{b}{2} \right)}^{2}}={{\left( \dfrac{b}{2} \right)}^{2}}-c$ ….. (i)
Here, we can see that the expression ${{x}^{2}}+bx+{{\left( \dfrac{b}{2} \right)}^{2}}$ forms a perfect square such that ${{x}^{2}}+bx+{{\left( \dfrac{b}{2} \right)}^{2}}={{\left( x+\dfrac{b}{2} \right)}^{2}}$
Then substitute this value in equation (i).
$\Rightarrow {{\left( x+\dfrac{b}{2} \right)}^{2}}={{\left( \dfrac{b}{2} \right)}^{2}}-c$
Therefore, we can obtain a perfect square in this way.
Let us now perform the same method for the given equation.
Add ${{\left( -\dfrac{5}{2} \right)}^{2}}=\dfrac{25}{4}$ on both sides of the equation ${{x}^{2}}-5x+\dfrac{25}{4}+1=\dfrac{25}{4}$
$\Rightarrow {{\left( x-\dfrac{5}{2} \right)}^{2}}=\dfrac{25}{4}-1$
$\Rightarrow {{\left( x-\dfrac{5}{2} \right)}^{2}}=\dfrac{21}{4}$
Now, we can take square roots on both sides.
$\Rightarrow \left( x-\dfrac{5}{2} \right)=\pm \sqrt{\dfrac{21}{4}}$
$\Rightarrow x-\dfrac{5}{2}=\pm \dfrac{\sqrt{21}}{2}$
$\Rightarrow x=\dfrac{5\pm \sqrt{21}}{2}$
Then, this means that $x=\dfrac{5+\sqrt{21}}{2}$ or $x=\dfrac{5-\sqrt{21}}{2}$.
Note: When we have a quadratic equation in the form of $a{{x}^{2}}+bx+c=0$, we have to add the term $\dfrac{1}{a}{{\left( \dfrac{b}{2} \right)}^{2}}$ on both the sides of the equation.
Otherwise, we can divide the whole equation by a factor ‘a’ and then add ${{\left( \dfrac{b}{2} \right)}^{2}}$ on both sides.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE