
How do you solve \[{{x}^{2}}-3x-4=0\] by quadratic formula?
Answer
525k+ views
Hint: We are given \[{{x}^{2}}-3x-4=0\] and to solve this we learn about the type of equation we are given then learn a number of solutions to the equation. We will learn how to factor the quadratic equation and we will use the middle term split to factor the term and we will simplify by taking common terms out. We will also use the zero product rule to get our answer. To be sure about your answer we can also check by putting the acquired value of the solution in the given equation and check whether they are the same or not.
Complete step-by-step solution:
We are given \[{{x}^{2}}-3x-4=0\] and we are asked to solve the given problem. First, we observe that it has a maximum power of ‘2’ so it is a quadratic equation. Now we should know that the quadratic equation has 2 solutions or we say an equation of power ‘n’ will have an ‘n’ solution. Now as it is a quadratic equation we will change it into standard form \[a{{x}^{2}}+bx+c=0.\] As we look closely our problem is already in standard form.
\[{{x}^{2}}-3x-4=0\]
Now, we have to solve the equation \[{{x}^{2}}-3x-4=0.\]
To solve this equation we first take the greatest common factor possibly available to the terms. As we can see that in \[{{x}^{2}}-3x-4=0,\] 1, – 3 and – 4 have nothing in common. So, the equation remains the same.
\[{{x}^{2}}-3x-4=0\]
Now, we are asked to solve our problem using the quadratic formula. For any quadratic equation, \[a{{x}^{2}}+bx+c=0\] the quadratic formula is given as
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
For our equation, \[{{x}^{2}}-3x-4=0,\] we have a = 1, b = – 3 and c = – 4. So, using these values in the above formula, we will get,
\[\Rightarrow x=\dfrac{-\left( -3 \right)\pm \sqrt{{{\left( -3 \right)}^{2}}-4\times 1\times -4}}{2\times 1}\]
On simplifying, we get,
\[\Rightarrow x=\dfrac{3\pm \sqrt{25}}{2}\]
So, we get,
\[\Rightarrow x=\dfrac{3\pm 5}{2}\]
Simplifying further, we get,
\[\Rightarrow x=\dfrac{3+5}{2}=\dfrac{8}{2};x=\dfrac{3-5}{2}=\dfrac{-2}{2}\]
So, we get,
\[\Rightarrow x=4;x=-1\]
Hence, the solutions are x = 4 and x = – 1.
Note: We can also solve this using another method which is called by factoring. We factor using the middle term split. For the quadratic equation, \[a{{x}^{2}}+bx+c=0\] we will find such a pair of a term whose products is the same as \[a\times c\] and whose sum of difference will be equal to b. Now in \[{{x}^{2}}-3x-4=0\] we have a = 1, b = – 3 and c = – 4. So, we get,
\[a\times x=1\times -4=-4\]
We can see that \[1\times -4=-4\] and their sum is – 4 + 1 = – 3. So, we use this to split.
\[{{x}^{2}}-3x-4=0\]
\[\Rightarrow {{x}^{2}}+\left( -4+1 \right)x-4=0\]
Opening the brackets, we get,
\[\Rightarrow {{x}^{2}}-4x+x-4=0\]
Taking common in the first two and last two terms and we get,
\[\Rightarrow x\left( x-4 \right)+1\left( x-4 \right)=0\]
As x – 4 is common, so simplifying further, we get,
\[\Rightarrow \left( x+1 \right)\left( x-4 \right)=0\]
Using zero product rule which says if two terms product is zero that either one of them is zero. So, either
\[\Rightarrow x+1=0;x-4=0\]
So we get, x = – 1 and x = 4.
Hence, the solutions are x = – 1 and x = 4.
Complete step-by-step solution:
We are given \[{{x}^{2}}-3x-4=0\] and we are asked to solve the given problem. First, we observe that it has a maximum power of ‘2’ so it is a quadratic equation. Now we should know that the quadratic equation has 2 solutions or we say an equation of power ‘n’ will have an ‘n’ solution. Now as it is a quadratic equation we will change it into standard form \[a{{x}^{2}}+bx+c=0.\] As we look closely our problem is already in standard form.
\[{{x}^{2}}-3x-4=0\]
Now, we have to solve the equation \[{{x}^{2}}-3x-4=0.\]
To solve this equation we first take the greatest common factor possibly available to the terms. As we can see that in \[{{x}^{2}}-3x-4=0,\] 1, – 3 and – 4 have nothing in common. So, the equation remains the same.
\[{{x}^{2}}-3x-4=0\]
Now, we are asked to solve our problem using the quadratic formula. For any quadratic equation, \[a{{x}^{2}}+bx+c=0\] the quadratic formula is given as
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
For our equation, \[{{x}^{2}}-3x-4=0,\] we have a = 1, b = – 3 and c = – 4. So, using these values in the above formula, we will get,
\[\Rightarrow x=\dfrac{-\left( -3 \right)\pm \sqrt{{{\left( -3 \right)}^{2}}-4\times 1\times -4}}{2\times 1}\]
On simplifying, we get,
\[\Rightarrow x=\dfrac{3\pm \sqrt{25}}{2}\]
So, we get,
\[\Rightarrow x=\dfrac{3\pm 5}{2}\]
Simplifying further, we get,
\[\Rightarrow x=\dfrac{3+5}{2}=\dfrac{8}{2};x=\dfrac{3-5}{2}=\dfrac{-2}{2}\]
So, we get,
\[\Rightarrow x=4;x=-1\]
Hence, the solutions are x = 4 and x = – 1.
Note: We can also solve this using another method which is called by factoring. We factor using the middle term split. For the quadratic equation, \[a{{x}^{2}}+bx+c=0\] we will find such a pair of a term whose products is the same as \[a\times c\] and whose sum of difference will be equal to b. Now in \[{{x}^{2}}-3x-4=0\] we have a = 1, b = – 3 and c = – 4. So, we get,
\[a\times x=1\times -4=-4\]
We can see that \[1\times -4=-4\] and their sum is – 4 + 1 = – 3. So, we use this to split.
\[{{x}^{2}}-3x-4=0\]
\[\Rightarrow {{x}^{2}}+\left( -4+1 \right)x-4=0\]
Opening the brackets, we get,
\[\Rightarrow {{x}^{2}}-4x+x-4=0\]
Taking common in the first two and last two terms and we get,
\[\Rightarrow x\left( x-4 \right)+1\left( x-4 \right)=0\]
As x – 4 is common, so simplifying further, we get,
\[\Rightarrow \left( x+1 \right)\left( x-4 \right)=0\]
Using zero product rule which says if two terms product is zero that either one of them is zero. So, either
\[\Rightarrow x+1=0;x-4=0\]
So we get, x = – 1 and x = 4.
Hence, the solutions are x = – 1 and x = 4.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

