Answer
Verified
426k+ views
Hint: This question involves the arithmetic operations like addition/ subtraction/ multiplication/ division. Also, we need to know the basic form of a quadratic equation and the formula to find the value of \[x\] in a quadratic equation. We need to know the square root values of basic numbers. We have the term \[{x^2}\] in the question, so we would find two values \[x\] by solving the given equation.
Complete step-by-step answer:
The given equation is shown below,
\[{x^2} + x - 12 = 0 \to \left( 1 \right)\]
We know that the basic form of a quadratic equation is,
\[a{x^2} + bx + c = 0 \to \left( 2 \right)\]
The formula for finding the value \[x\] from the above equation is given below,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \to \left( 3 \right)\]
By comparing the equation \[\left( 1 \right)\] and \[\left( 2 \right)\], we get the value of \[a,b\]and\[c\].
\[\left( 1 \right) \to {x^2} + x - 12 = 0\]
\[\left( 2 \right) \to a{x^2} + bx + c = 0\]
So, we get the value of \[a\] is \[1\], the value of \[b\] is \[1\] , and the value of \[c\] is \[ - 12\]. Let’s substitute these values in the equation\[\left( 3 \right)\], we get
\[\left( 3 \right) \to x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[x = \dfrac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4 \times 1 \times - 12} }}{{2 \times 1}}\]
\[
x = \dfrac{{ - 1 \pm \sqrt {1 + 48} }}{2} \\
x = \dfrac{{ - 1 \pm \sqrt {49} }}{2} \\
\]
We know that \[{7^2} = 49\]. So, the above equation can also be written as,
\[x = \dfrac{{ - 1 \pm 7}}{2}\]
Case: \[1\]
\[x = \dfrac{{ - 1 + 7}}{2} = \dfrac{6}{2}\]
\[x = 3\]
Case: \[2\]
\[x = \dfrac{{ - 1 - 7}}{2} = \dfrac{{ - 8}}{2}\]
\[x = - 4\]
So, the final answer is,
\[x = 3\]and \[x = - 4\]
Note: This type of questions involves the arithmetic operation like addition/ subtraction/ multiplication/ division. Note that the denominator value would not be equal to zero. When\[{n^2}\]is placed inside the square root we can cancel the square and square root of each other. If \[ \pm \]is present in the calculation we would find two values\[x\]. Also, note that if \[{x^2}\]is present in the given equation in the question it must have two factors for the equation. Also, note that if \[ - \]is present inside the root we would put\[j\]it with the answer.
Complete step-by-step answer:
The given equation is shown below,
\[{x^2} + x - 12 = 0 \to \left( 1 \right)\]
We know that the basic form of a quadratic equation is,
\[a{x^2} + bx + c = 0 \to \left( 2 \right)\]
The formula for finding the value \[x\] from the above equation is given below,
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \to \left( 3 \right)\]
By comparing the equation \[\left( 1 \right)\] and \[\left( 2 \right)\], we get the value of \[a,b\]and\[c\].
\[\left( 1 \right) \to {x^2} + x - 12 = 0\]
\[\left( 2 \right) \to a{x^2} + bx + c = 0\]
So, we get the value of \[a\] is \[1\], the value of \[b\] is \[1\] , and the value of \[c\] is \[ - 12\]. Let’s substitute these values in the equation\[\left( 3 \right)\], we get
\[\left( 3 \right) \to x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
\[x = \dfrac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4 \times 1 \times - 12} }}{{2 \times 1}}\]
\[
x = \dfrac{{ - 1 \pm \sqrt {1 + 48} }}{2} \\
x = \dfrac{{ - 1 \pm \sqrt {49} }}{2} \\
\]
We know that \[{7^2} = 49\]. So, the above equation can also be written as,
\[x = \dfrac{{ - 1 \pm 7}}{2}\]
Case: \[1\]
\[x = \dfrac{{ - 1 + 7}}{2} = \dfrac{6}{2}\]
\[x = 3\]
Case: \[2\]
\[x = \dfrac{{ - 1 - 7}}{2} = \dfrac{{ - 8}}{2}\]
\[x = - 4\]
So, the final answer is,
\[x = 3\]and \[x = - 4\]
Note: This type of questions involves the arithmetic operation like addition/ subtraction/ multiplication/ division. Note that the denominator value would not be equal to zero. When\[{n^2}\]is placed inside the square root we can cancel the square and square root of each other. If \[ \pm \]is present in the calculation we would find two values\[x\]. Also, note that if \[{x^2}\]is present in the given equation in the question it must have two factors for the equation. Also, note that if \[ - \]is present inside the root we would put\[j\]it with the answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE