Answer
Verified
426.3k+ views
Hint: We are given ${{x}^{2}}+x-42=0$ to solve this we learn about the type of Equation we are given then learn the number of solutions of the equation. We will learn how to factor the quadratic equation, we will use the middle term split to factor the term and we will simplify by taking common terms out. We also use zero product rules to get our answer. To be sure about your answer we can also check by putting the acquired value of the solution in the given Equation and check whether they are the same or not.
Complete step-by-step solution:
We are asked to solve the given problem ${{x}^{2}}+x-42=0$. First, we observe that it has a maximum power of $2$ so it is a quadratic equation.
Now we should know that a quadratic equation has a $2$ solution or we say an equation of power 'n' will have an 'n' solution.
Now as it is a quadratic equation, we will change it into standard form \[\mathbf{a}{{\mathbf{y}}^{2}}+\mathbf{by}+\mathbf{c}=\mathbf{0}\]\[\]
As we look closely our problem is already in standard form ${{x}^{2}}+x-42=0$
Now we have to solve the equation ${{x}^{2}}+x-42=0$
To solve this equation, we first take the greatest common factor possibly available to the terms.
As we can see that in ${{x}^{2}}+x-42=0$
\[1,1,-42\] has nothing in common
Equation remains same
$\Rightarrow {{x}^{2}}+x-42=0$
Now, as we are asked, we have to solve using the Quadratic formula so we should know what quadratic formula mean for ay Quadratic equation \[\mathbf{a}{{\mathbf{y}}^{2}}+\mathbf{b}x+\mathbf{c}=\mathbf{0}\]
Solution is given by the formula
$\begin{align}
& x=\dfrac{-b\pm \sqrt{4ac}}{2a} \\
& \\
\end{align}$
This formula is called quadratic formula for our equation
${{x}^{2}}+x-42=0$
We have $a=1,\,b=1,\,c=-42$
So using this in quadratic formula we get,
$x=\dfrac{-1\pm \sqrt{{{(1)}^{2}}-4\times 1\times 1-42}}{2(1)}$
Simplifying we get
$\Rightarrow x=\dfrac{-1\pm \sqrt{169}}{2}$
As $\sqrt{169}=13$
\[\Rightarrow x=\dfrac{-1\pm 13}{2}\]
Hence, we get solution as
\[x=\dfrac{-1+13}{2},\,\,\,x=\dfrac{-1\pm -3}{2}\]
So, solution for ${{x}^{2}}+x-42=0$ are
\[x=6\,\,\,\,\text{and}\,\,\,x=-7\]
Note: This is a good method to solve our pattern based on quadratic equations. It gives answers very directly and it causes less chances of error. We can check our answer by putting \[x=6\,\,\,\,\text{and}\,\,\,x=-7\] in ${{x}^{2}}+x-42=0$. If it satisfies that our solution is correct putting
\[x=6\,\,\operatorname{in}\,\,{{x}^{2}}+x-42=0\]
We get,
\[\begin{align}
& {{6}^{2}}+6-42=0 \\
& 42-42=0 \\
\end{align}\]
It is true.
So \[x=6\] is correct.
Now checking \[x=-7\]
Putting \[x=-7\,\operatorname{in}\,\,{{x}^{2}}+x-42=0\]
\[\begin{align}
& {{(-7)}^{2}}-7-42=0 \\
& 49-49=0 \\
\end{align}\]
Which is also true.
So, \[x=-7\] is also the right solution.
Complete step-by-step solution:
We are asked to solve the given problem ${{x}^{2}}+x-42=0$. First, we observe that it has a maximum power of $2$ so it is a quadratic equation.
Now we should know that a quadratic equation has a $2$ solution or we say an equation of power 'n' will have an 'n' solution.
Now as it is a quadratic equation, we will change it into standard form \[\mathbf{a}{{\mathbf{y}}^{2}}+\mathbf{by}+\mathbf{c}=\mathbf{0}\]\[\]
As we look closely our problem is already in standard form ${{x}^{2}}+x-42=0$
Now we have to solve the equation ${{x}^{2}}+x-42=0$
To solve this equation, we first take the greatest common factor possibly available to the terms.
As we can see that in ${{x}^{2}}+x-42=0$
\[1,1,-42\] has nothing in common
Equation remains same
$\Rightarrow {{x}^{2}}+x-42=0$
Now, as we are asked, we have to solve using the Quadratic formula so we should know what quadratic formula mean for ay Quadratic equation \[\mathbf{a}{{\mathbf{y}}^{2}}+\mathbf{b}x+\mathbf{c}=\mathbf{0}\]
Solution is given by the formula
$\begin{align}
& x=\dfrac{-b\pm \sqrt{4ac}}{2a} \\
& \\
\end{align}$
This formula is called quadratic formula for our equation
${{x}^{2}}+x-42=0$
We have $a=1,\,b=1,\,c=-42$
So using this in quadratic formula we get,
$x=\dfrac{-1\pm \sqrt{{{(1)}^{2}}-4\times 1\times 1-42}}{2(1)}$
Simplifying we get
$\Rightarrow x=\dfrac{-1\pm \sqrt{169}}{2}$
As $\sqrt{169}=13$
\[\Rightarrow x=\dfrac{-1\pm 13}{2}\]
Hence, we get solution as
\[x=\dfrac{-1+13}{2},\,\,\,x=\dfrac{-1\pm -3}{2}\]
So, solution for ${{x}^{2}}+x-42=0$ are
\[x=6\,\,\,\,\text{and}\,\,\,x=-7\]
Note: This is a good method to solve our pattern based on quadratic equations. It gives answers very directly and it causes less chances of error. We can check our answer by putting \[x=6\,\,\,\,\text{and}\,\,\,x=-7\] in ${{x}^{2}}+x-42=0$. If it satisfies that our solution is correct putting
\[x=6\,\,\operatorname{in}\,\,{{x}^{2}}+x-42=0\]
We get,
\[\begin{align}
& {{6}^{2}}+6-42=0 \\
& 42-42=0 \\
\end{align}\]
It is true.
So \[x=6\] is correct.
Now checking \[x=-7\]
Putting \[x=-7\,\operatorname{in}\,\,{{x}^{2}}+x-42=0\]
\[\begin{align}
& {{(-7)}^{2}}-7-42=0 \\
& 49-49=0 \\
\end{align}\]
Which is also true.
So, \[x=-7\] is also the right solution.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE