
How do you solve using gaussian elimination or Gauss-Jordan elimination
\[2x + 5y - 2z = 14\]; \[5x - 6y + 2z = 0\]; \[4x - y + 3z = - 7\]?
Answer
502.2k+ views
Hint: Here in this question, we have to solve the variable \[x\], \[y\], and \[z\] using matrices. The method of solving this type of question is known as “Gauss-Jordan elimination”. First, we have to construct an augmented matrix by using the coefficients of variables and later by the row echelon form and using the back substitution method we get the required solution.
Complete step by step solution:
The Gauss-Jordan method, also known as Gauss-Jordan elimination method is used to solve a system of linear equations and is a modified version of Gauss Elimination Method.
we have to perform 2 different process in Gauss Elimination Method i.e.,
1) Formation of upper triangular matrix, and
2) Back substitution
using reduced row echelon form.
Consider the given system of linear equations:
\[2x + 5y - 2z = 14\]--------(1)
\[5x - 6y + 2z = 0\]--------(2)
\[4x - y + 3z = - 7\]--------(3)
Now, write the augmented matrix of the system of linear equations
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
2&5&{ - 2}&|&{14} \\
5&{ - 6}&2&|&0 \\
4&{ - 1}&3&|&{ - 7}
\end{array}} \right]\]
Make the pivot in the first column and the first row
Now, Eliminate the elements in matrix step by step, using row reduced echelon form
\[{R_3} \to {R_3} - 2{R_1}\;\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
2&5&{ - 2}&|&{14} \\
5&{ - 6}&2&|&0 \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_1} \to 5{R_1}\] and \[{R_2} \to 2{R_2}\;\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
{10}&{ - 12}&4&|&0 \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_2} \to {R_2} - {R_1}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 37}&{14}&|&{ - 70} \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_2} \to 11{R_2}\] and \[{R_3} \to 37{R_3}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 407}&{154}&|&{ - 770} \\
0&{ - 407}&{259}&|&{ - 1295}
\end{array}} \right]\]
\[{R_3} \to {R_3} - {R_2}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 407}&{154}&|&{ - 770} \\
0&0&{105}&|&{ - 525}
\end{array}} \right]\]
Now using the back substituting method to get the values of variables \[x\], \[y\] and \[z\].
Write the three equation:
\[10x + 25y - 10z = 70\]-----(4)
\[ - 407y + 154z = - 770\]------(5)
\[105z = - 525\]----------(6)
Let us take equation (6)
\[ \Rightarrow \,\,105z = - 525\]
Divide both side by 105, then
\[ \Rightarrow \,\,z = - \dfrac{{525}}{{105}}\]
\[ \Rightarrow \,\,z = - 5\]
Hence, the value of \[z = - 5\]
Substitute the \[z\] value in equation (5), then
\[ \Rightarrow \,\, - 407y + 154\left( { - 5} \right) = - 770\]
\[ \Rightarrow \,\, - 407y - 770 = - 770\]
Add 770 on both side, then we have
\[ \Rightarrow \,\, - 407y = - 770 + 770\]
\[ \Rightarrow \,\, - 407y = 0\]
Divide both side by -407, the n
\[ \Rightarrow \,\,y = \dfrac{0}{{ - 407}}\]
\[\therefore \,\,y = 0\]
Now, substitute the \[y\] and \[z\] value in equation (4), then
\[ \Rightarrow \,\,10x + 25\left( 0 \right) - 10\left( { - 5} \right) = 70\]
\[ \Rightarrow \,\,10x + 0 + 50 = 70\]
Subtract 50 on both side, then we get
\[ \Rightarrow \,\,10x = 70 - 50\]
\[ \Rightarrow \,\,10x = 20\]
Divide 10 on both side, then
\[ \Rightarrow \,x = \dfrac{{20}}{{10}}\]
\[\therefore \,\,x = 2\]
Hence, the required solution is
\[\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2 \\
0 \\
{ - 5}
\end{array}} \right]\]
Note: When solving this type of questions, when an augmented matrix contains the coefficients of the unknowns and the "pure" coefficients. You can manipulate the rows of this matrix (elementary row operations) to transform the coefficients and to "read", at the end, the solutions of your system. And while solving the back substitution method we take the equation from the bottom of the augmented matrix.
Complete step by step solution:
The Gauss-Jordan method, also known as Gauss-Jordan elimination method is used to solve a system of linear equations and is a modified version of Gauss Elimination Method.
we have to perform 2 different process in Gauss Elimination Method i.e.,
1) Formation of upper triangular matrix, and
2) Back substitution
using reduced row echelon form.
Consider the given system of linear equations:
\[2x + 5y - 2z = 14\]--------(1)
\[5x - 6y + 2z = 0\]--------(2)
\[4x - y + 3z = - 7\]--------(3)
Now, write the augmented matrix of the system of linear equations
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
2&5&{ - 2}&|&{14} \\
5&{ - 6}&2&|&0 \\
4&{ - 1}&3&|&{ - 7}
\end{array}} \right]\]
Make the pivot in the first column and the first row
Now, Eliminate the elements in matrix step by step, using row reduced echelon form
\[{R_3} \to {R_3} - 2{R_1}\;\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
2&5&{ - 2}&|&{14} \\
5&{ - 6}&2&|&0 \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_1} \to 5{R_1}\] and \[{R_2} \to 2{R_2}\;\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
{10}&{ - 12}&4&|&0 \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_2} \to {R_2} - {R_1}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 37}&{14}&|&{ - 70} \\
0&{ - 11}&7&|&{ - 35}
\end{array}} \right]\]
\[{R_2} \to 11{R_2}\] and \[{R_3} \to 37{R_3}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 407}&{154}&|&{ - 770} \\
0&{ - 407}&{259}&|&{ - 1295}
\end{array}} \right]\]
\[{R_3} \to {R_3} - {R_2}\]
\[ \Rightarrow \,A = \left[ {\begin{array}{*{20}{c}}
{10}&{25}&{ - 10}&|&{70} \\
0&{ - 407}&{154}&|&{ - 770} \\
0&0&{105}&|&{ - 525}
\end{array}} \right]\]
Now using the back substituting method to get the values of variables \[x\], \[y\] and \[z\].
Write the three equation:
\[10x + 25y - 10z = 70\]-----(4)
\[ - 407y + 154z = - 770\]------(5)
\[105z = - 525\]----------(6)
Let us take equation (6)
\[ \Rightarrow \,\,105z = - 525\]
Divide both side by 105, then
\[ \Rightarrow \,\,z = - \dfrac{{525}}{{105}}\]
\[ \Rightarrow \,\,z = - 5\]
Hence, the value of \[z = - 5\]
Substitute the \[z\] value in equation (5), then
\[ \Rightarrow \,\, - 407y + 154\left( { - 5} \right) = - 770\]
\[ \Rightarrow \,\, - 407y - 770 = - 770\]
Add 770 on both side, then we have
\[ \Rightarrow \,\, - 407y = - 770 + 770\]
\[ \Rightarrow \,\, - 407y = 0\]
Divide both side by -407, the n
\[ \Rightarrow \,\,y = \dfrac{0}{{ - 407}}\]
\[\therefore \,\,y = 0\]
Now, substitute the \[y\] and \[z\] value in equation (4), then
\[ \Rightarrow \,\,10x + 25\left( 0 \right) - 10\left( { - 5} \right) = 70\]
\[ \Rightarrow \,\,10x + 0 + 50 = 70\]
Subtract 50 on both side, then we get
\[ \Rightarrow \,\,10x = 70 - 50\]
\[ \Rightarrow \,\,10x = 20\]
Divide 10 on both side, then
\[ \Rightarrow \,x = \dfrac{{20}}{{10}}\]
\[\therefore \,\,x = 2\]
Hence, the required solution is
\[\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2 \\
0 \\
{ - 5}
\end{array}} \right]\]
Note: When solving this type of questions, when an augmented matrix contains the coefficients of the unknowns and the "pure" coefficients. You can manipulate the rows of this matrix (elementary row operations) to transform the coefficients and to "read", at the end, the solutions of your system. And while solving the back substitution method we take the equation from the bottom of the augmented matrix.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

