
: Solve the problem where \[\alpha \]is a constant
\[\int {\dfrac{{\cos \alpha }}{{\sin x\cos \left( {x - \alpha } \right)}}dx = } \]____________+c, where \[0 < x < \alpha < \dfrac{\pi }{2}\] .
A. \[ - \ln |\tan \,x\, + \,\cot \,\alpha |\]
B. \[\ln |\cot \,x\, + \,\tan \,\alpha |\]
C. \[\ln |\tan \,x\, + \,\cot \,\alpha |\]
D. \[ - \ln |\cot \,x\, + \,\tan \,\alpha |\]
Answer
605.1k+ views
Hint: Analyse the numerator and denominator, look for expansion of the numerator, such that it gets easier to solve the given equation and then integrate the simplified equation to get the answer.
.\[ \Rightarrow \int {\dfrac{{\cos \alpha }}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \].
We can express as (x-(x-$\alpha $),
\[ \Rightarrow \int {\dfrac{{\cos \left( {x - \left( {x - \alpha } \right)} \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]
Expand the numerator using the formula of cos (A-B), taking A=x and B=(x-$\alpha $).
The formula of cos (A-B) is,
cos (A-B)=cosAcosB+sinAsinB,
Therefore, on applying the above formula, we get,
\[ \Rightarrow \int {\dfrac{{\cos x\cos \left( {x - \alpha } \right) + \sin x\sin \left( {x - \alpha } \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]
Let us split the terms here such that, it becomes,
$ \Rightarrow \int {\left( {\cot x + \tan \left( {x - \alpha } \right)} \right)} dx$
Now, on integrating we get,
The integration of cot x = ln|sin x| + C and tan x = - ln|cos x| + C, therefore,
$ \Rightarrow \ln |\sin x| - \ln |\cos \left( {x - \alpha } \right)|$
Now, we know that,$\ln A - \ln B = \ln |\dfrac{A}{B}|$, therefore,
$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos \left( {x - \alpha } \right)}}|$
We can expand the denominator using the formula cos (A-B)= cosAcosB+sinAsinB,
Therefore the equation becomes,
$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos x\cos \alpha + \sin x\sin \alpha }}|$
Dividing the numerator and denominator with \[sinxcos\alpha ,\]we get,
\[ \Rightarrow \ln |\dfrac{{\sec \alpha }}{{\cot x + \tan \alpha }}|\]
We know that, $\ln A - \ln B = \ln |\dfrac{A}{B}|$
$ \Rightarrow \ln |\sec \alpha - \ln \left( {\cot x + \tan \alpha } \right)|$
Since, it is given that \[\alpha \]is constant, therefore,
$ \Rightarrow - \ln |\left( {\cot x + \tan \alpha } \right)| + C$
Hence, option D is correct.
Note: Make sure you take the correct value of A and B such that the solving part becomes easy in the further steps.and use appropriate formulas to expand the equation in numerator and denominator. Make sure you do not forget the signs while integrating.
.\[ \Rightarrow \int {\dfrac{{\cos \alpha }}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \].
We can express as (x-(x-$\alpha $),
\[ \Rightarrow \int {\dfrac{{\cos \left( {x - \left( {x - \alpha } \right)} \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]
Expand the numerator using the formula of cos (A-B), taking A=x and B=(x-$\alpha $).
The formula of cos (A-B) is,
cos (A-B)=cosAcosB+sinAsinB,
Therefore, on applying the above formula, we get,
\[ \Rightarrow \int {\dfrac{{\cos x\cos \left( {x - \alpha } \right) + \sin x\sin \left( {x - \alpha } \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]
Let us split the terms here such that, it becomes,
$ \Rightarrow \int {\left( {\cot x + \tan \left( {x - \alpha } \right)} \right)} dx$
Now, on integrating we get,
The integration of cot x = ln|sin x| + C and tan x = - ln|cos x| + C, therefore,
$ \Rightarrow \ln |\sin x| - \ln |\cos \left( {x - \alpha } \right)|$
Now, we know that,$\ln A - \ln B = \ln |\dfrac{A}{B}|$, therefore,
$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos \left( {x - \alpha } \right)}}|$
We can expand the denominator using the formula cos (A-B)= cosAcosB+sinAsinB,
Therefore the equation becomes,
$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos x\cos \alpha + \sin x\sin \alpha }}|$
Dividing the numerator and denominator with \[sinxcos\alpha ,\]we get,
\[ \Rightarrow \ln |\dfrac{{\sec \alpha }}{{\cot x + \tan \alpha }}|\]
We know that, $\ln A - \ln B = \ln |\dfrac{A}{B}|$
$ \Rightarrow \ln |\sec \alpha - \ln \left( {\cot x + \tan \alpha } \right)|$
Since, it is given that \[\alpha \]is constant, therefore,
$ \Rightarrow - \ln |\left( {\cot x + \tan \alpha } \right)| + C$
Hence, option D is correct.
Note: Make sure you take the correct value of A and B such that the solving part becomes easy in the further steps.and use appropriate formulas to expand the equation in numerator and denominator. Make sure you do not forget the signs while integrating.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

