# : Solve the problem where \[\alpha \]is a constant

\[\int {\dfrac{{\cos \alpha }}{{\sin x\cos \left( {x - \alpha } \right)}}dx = } \]____________+c, where \[0 < x < \alpha < \dfrac{\pi }{2}\] .

A. \[ - \ln |\tan \,x\, + \,\cot \,\alpha |\]

B. \[\ln |\cot \,x\, + \,\tan \,\alpha |\]

C. \[\ln |\tan \,x\, + \,\cot \,\alpha |\]

D. \[ - \ln |\cot \,x\, + \,\tan \,\alpha |\]

Answer

Verified

328.8k+ views

Hint: Analyse the numerator and denominator, look for expansion of the numerator, such that it gets easier to solve the given equation and then integrate the simplified equation to get the answer.

.\[ \Rightarrow \int {\dfrac{{\cos \alpha }}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \].

We can express as (x-(x-$\alpha $),

\[ \Rightarrow \int {\dfrac{{\cos \left( {x - \left( {x - \alpha } \right)} \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]

Expand the numerator using the formula of cos (A-B), taking A=x and B=(x-$\alpha $).

The formula of cos (A-B) is,

cos (A-B)=cosAcosB+sinAsinB,

Therefore, on applying the above formula, we get,

\[ \Rightarrow \int {\dfrac{{\cos x\cos \left( {x - \alpha } \right) + \sin x\sin \left( {x - \alpha } \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]

Let us split the terms here such that, it becomes,

$ \Rightarrow \int {\left( {\cot x + \tan \left( {x - \alpha } \right)} \right)} dx$

Now, on integrating we get,

The integration of cot x = ln|sin x| + C and tan x = - ln|cos x| + C, therefore,

$ \Rightarrow \ln |\sin x| - \ln |\cos \left( {x - \alpha } \right)|$

Now, we know that,$\ln A - \ln B = \ln |\dfrac{A}{B}|$, therefore,

$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos \left( {x - \alpha } \right)}}|$

We can expand the denominator using the formula cos (A-B)= cosAcosB+sinAsinB,

Therefore the equation becomes,

$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos x\cos \alpha + \sin x\sin \alpha }}|$

Dividing the numerator and denominator with \[sinxcos\alpha ,\]we get,

\[ \Rightarrow \ln |\dfrac{{\sec \alpha }}{{\cot x + \tan \alpha }}|\]

We know that, $\ln A - \ln B = \ln |\dfrac{A}{B}|$

$ \Rightarrow \ln |\sec \alpha - \ln \left( {\cot x + \tan \alpha } \right)|$

Since, it is given that \[\alpha \]is constant, therefore,

$ \Rightarrow - \ln |\left( {\cot x + \tan \alpha } \right)| + C$

Hence, option D is correct.

Note: Make sure you take the correct value of A and B such that the solving part becomes easy in the further steps.and use appropriate formulas to expand the equation in numerator and denominator. Make sure you do not forget the signs while integrating.

.\[ \Rightarrow \int {\dfrac{{\cos \alpha }}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \].

We can express as (x-(x-$\alpha $),

\[ \Rightarrow \int {\dfrac{{\cos \left( {x - \left( {x - \alpha } \right)} \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]

Expand the numerator using the formula of cos (A-B), taking A=x and B=(x-$\alpha $).

The formula of cos (A-B) is,

cos (A-B)=cosAcosB+sinAsinB,

Therefore, on applying the above formula, we get,

\[ \Rightarrow \int {\dfrac{{\cos x\cos \left( {x - \alpha } \right) + \sin x\sin \left( {x - \alpha } \right)}}{{\sin x\cos \left( {x - \alpha } \right)}}dx} \]

Let us split the terms here such that, it becomes,

$ \Rightarrow \int {\left( {\cot x + \tan \left( {x - \alpha } \right)} \right)} dx$

Now, on integrating we get,

The integration of cot x = ln|sin x| + C and tan x = - ln|cos x| + C, therefore,

$ \Rightarrow \ln |\sin x| - \ln |\cos \left( {x - \alpha } \right)|$

Now, we know that,$\ln A - \ln B = \ln |\dfrac{A}{B}|$, therefore,

$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos \left( {x - \alpha } \right)}}|$

We can expand the denominator using the formula cos (A-B)= cosAcosB+sinAsinB,

Therefore the equation becomes,

$ \Rightarrow \ln |\dfrac{{\sin x}}{{\cos x\cos \alpha + \sin x\sin \alpha }}|$

Dividing the numerator and denominator with \[sinxcos\alpha ,\]we get,

\[ \Rightarrow \ln |\dfrac{{\sec \alpha }}{{\cot x + \tan \alpha }}|\]

We know that, $\ln A - \ln B = \ln |\dfrac{A}{B}|$

$ \Rightarrow \ln |\sec \alpha - \ln \left( {\cot x + \tan \alpha } \right)|$

Since, it is given that \[\alpha \]is constant, therefore,

$ \Rightarrow - \ln |\left( {\cot x + \tan \alpha } \right)| + C$

Hence, option D is correct.

Note: Make sure you take the correct value of A and B such that the solving part becomes easy in the further steps.and use appropriate formulas to expand the equation in numerator and denominator. Make sure you do not forget the signs while integrating.

Last updated date: 01st Jun 2023

â€¢

Total views: 328.8k

â€¢

Views today: 5.87k

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE