
How do you solve the inequality \[ - 5x \geqslant 25\]?
Answer
526.2k+ views
Hint: An inequality compares two values, showing if one is less than, greater than, or simply not equal to another value. Here we need to solve for ‘x’ which is a variable. Solving the given inequality is very like solving equations and we do most of the same thing but we must pay attention to the direction of inequality\[( \leqslant , > )\].
Complete step-by-step solution:
Given, \[ - 5x \geqslant 25\].
Now we need to solve for ‘x’.
Since we have negative 5 on the left hand side. If we divide a negative number on both side the inequality the sign changes.
Now divide -5 on both side of the inequality we have,
\[
x \leqslant \dfrac{{25}}{{ - 5}} \\
x \leqslant - 5 \\
\]
Thus the solution of \[ - 5x \geqslant 25\] is \[x \leqslant - 5\].
In interval form we have \[( - \infty ,5]\].
(If we have \[ \leqslant or \geqslant \] we use closed intervals. If we have \[ > or < \] we use open interval)
Note: We know that \[a \ne b\]is says that ‘a’ is not equal to ‘b’. \[a > b\] means that ‘a’ is less than ‘b’. \[a < b\] means that ‘a’ is greater than ‘b’. These two are known as strict inequality. \[a \geqslant b\] means that ‘a’ is less than or equal to ‘b’. \[a \leqslant b\] means that ‘a’ is greater than or equal to ‘b’.
The direction of inequality do not change in these cases:
-Add or subtract a number from both sides.
-Multiply or divide both sides by a positive number.
-Simplify a side.
The direction of the inequality change in these cases:
-Multiply or divide both sides by a negative number.
-Swapping left and right hand sides.
Complete step-by-step solution:
Given, \[ - 5x \geqslant 25\].
Now we need to solve for ‘x’.
Since we have negative 5 on the left hand side. If we divide a negative number on both side the inequality the sign changes.
Now divide -5 on both side of the inequality we have,
\[
x \leqslant \dfrac{{25}}{{ - 5}} \\
x \leqslant - 5 \\
\]
Thus the solution of \[ - 5x \geqslant 25\] is \[x \leqslant - 5\].
In interval form we have \[( - \infty ,5]\].
(If we have \[ \leqslant or \geqslant \] we use closed intervals. If we have \[ > or < \] we use open interval)
Note: We know that \[a \ne b\]is says that ‘a’ is not equal to ‘b’. \[a > b\] means that ‘a’ is less than ‘b’. \[a < b\] means that ‘a’ is greater than ‘b’. These two are known as strict inequality. \[a \geqslant b\] means that ‘a’ is less than or equal to ‘b’. \[a \leqslant b\] means that ‘a’ is greater than or equal to ‘b’.
The direction of inequality do not change in these cases:
-Add or subtract a number from both sides.
-Multiply or divide both sides by a positive number.
-Simplify a side.
The direction of the inequality change in these cases:
-Multiply or divide both sides by a negative number.
-Swapping left and right hand sides.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

