
Solve the given problem \[2\sin 3A = 1\]
Answer
605.1k+ views
Hint: Here we have given multiple angles of \[A\]. So, first we have to convert the R.H.S. into degrees or radians. To do so we have to convert R.H.S. in terms sine angles. By doing this we can easily find out the multiple angles of \[A\].
Given \[2\sin 3A = 1\]
Dividing both sides with \[2\], we get
\[ \Rightarrow \sin 3A = \dfrac{1}{2}\]
We know that \[\sin {30^0} = \dfrac{1}{2}\]
By substituting the value of \[\dfrac{1}{2}\], we get
\[ \Rightarrow \sin 3A = \sin {30^0}\]
By cancelling sin on both sides, we have
\[
\Rightarrow 3A = {30^0} \\
\therefore A = \dfrac{\pi }{{18}} \\
\]
The sine function is positive in the first and the second quadrants. To Find the second solution, subtract the reference angle from \[\pi \] to find the solution in the second quadrant.
i.e., \[\pi - \dfrac{\pi }{6} = \dfrac{{5\pi }}{6}\]
\[\therefore A = \dfrac{{5\pi }}{{18}}\]
The period of the \[\sin 3A\] function is \[\dfrac{{2\pi }}{3}\]. So, values repeat after every \[\dfrac{{2\pi }}{3}\] radians in both the directions.
Thus, \[A = \left\{ {\dfrac{{2\pi n}}{3} + \dfrac{\pi }{{18}},\dfrac{{2\pi n}}{3} + \dfrac{{5\pi }}{{18}}} \right\}\] for any integer \[n\].
Note: In this problem we converted \[\dfrac{1}{2}\] in terms of sine angle because the L.H.S. is in sine function. Always remember to write all the possible angles by time period method. Do not forget to change the multiple angles of the functions.
Given \[2\sin 3A = 1\]
Dividing both sides with \[2\], we get
\[ \Rightarrow \sin 3A = \dfrac{1}{2}\]
We know that \[\sin {30^0} = \dfrac{1}{2}\]
By substituting the value of \[\dfrac{1}{2}\], we get
\[ \Rightarrow \sin 3A = \sin {30^0}\]
By cancelling sin on both sides, we have
\[
\Rightarrow 3A = {30^0} \\
\therefore A = \dfrac{\pi }{{18}} \\
\]
The sine function is positive in the first and the second quadrants. To Find the second solution, subtract the reference angle from \[\pi \] to find the solution in the second quadrant.
i.e., \[\pi - \dfrac{\pi }{6} = \dfrac{{5\pi }}{6}\]
\[\therefore A = \dfrac{{5\pi }}{{18}}\]
The period of the \[\sin 3A\] function is \[\dfrac{{2\pi }}{3}\]. So, values repeat after every \[\dfrac{{2\pi }}{3}\] radians in both the directions.
Thus, \[A = \left\{ {\dfrac{{2\pi n}}{3} + \dfrac{\pi }{{18}},\dfrac{{2\pi n}}{3} + \dfrac{{5\pi }}{{18}}} \right\}\] for any integer \[n\].
Note: In this problem we converted \[\dfrac{1}{2}\] in terms of sine angle because the L.H.S. is in sine function. Always remember to write all the possible angles by time period method. Do not forget to change the multiple angles of the functions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

