Answer
Verified
494.7k+ views
Hint: Here we have given multiple angles of \[A\]. So, first we have to convert the R.H.S. into degrees or radians. To do so we have to convert R.H.S. in terms sine angles. By doing this we can easily find out the multiple angles of \[A\].
Given \[2\sin 3A = 1\]
Dividing both sides with \[2\], we get
\[ \Rightarrow \sin 3A = \dfrac{1}{2}\]
We know that \[\sin {30^0} = \dfrac{1}{2}\]
By substituting the value of \[\dfrac{1}{2}\], we get
\[ \Rightarrow \sin 3A = \sin {30^0}\]
By cancelling sin on both sides, we have
\[
\Rightarrow 3A = {30^0} \\
\therefore A = \dfrac{\pi }{{18}} \\
\]
The sine function is positive in the first and the second quadrants. To Find the second solution, subtract the reference angle from \[\pi \] to find the solution in the second quadrant.
i.e., \[\pi - \dfrac{\pi }{6} = \dfrac{{5\pi }}{6}\]
\[\therefore A = \dfrac{{5\pi }}{{18}}\]
The period of the \[\sin 3A\] function is \[\dfrac{{2\pi }}{3}\]. So, values repeat after every \[\dfrac{{2\pi }}{3}\] radians in both the directions.
Thus, \[A = \left\{ {\dfrac{{2\pi n}}{3} + \dfrac{\pi }{{18}},\dfrac{{2\pi n}}{3} + \dfrac{{5\pi }}{{18}}} \right\}\] for any integer \[n\].
Note: In this problem we converted \[\dfrac{1}{2}\] in terms of sine angle because the L.H.S. is in sine function. Always remember to write all the possible angles by time period method. Do not forget to change the multiple angles of the functions.
Given \[2\sin 3A = 1\]
Dividing both sides with \[2\], we get
\[ \Rightarrow \sin 3A = \dfrac{1}{2}\]
We know that \[\sin {30^0} = \dfrac{1}{2}\]
By substituting the value of \[\dfrac{1}{2}\], we get
\[ \Rightarrow \sin 3A = \sin {30^0}\]
By cancelling sin on both sides, we have
\[
\Rightarrow 3A = {30^0} \\
\therefore A = \dfrac{\pi }{{18}} \\
\]
The sine function is positive in the first and the second quadrants. To Find the second solution, subtract the reference angle from \[\pi \] to find the solution in the second quadrant.
i.e., \[\pi - \dfrac{\pi }{6} = \dfrac{{5\pi }}{6}\]
\[\therefore A = \dfrac{{5\pi }}{{18}}\]
The period of the \[\sin 3A\] function is \[\dfrac{{2\pi }}{3}\]. So, values repeat after every \[\dfrac{{2\pi }}{3}\] radians in both the directions.
Thus, \[A = \left\{ {\dfrac{{2\pi n}}{3} + \dfrac{\pi }{{18}},\dfrac{{2\pi n}}{3} + \dfrac{{5\pi }}{{18}}} \right\}\] for any integer \[n\].
Note: In this problem we converted \[\dfrac{1}{2}\] in terms of sine angle because the L.H.S. is in sine function. Always remember to write all the possible angles by time period method. Do not forget to change the multiple angles of the functions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE