
Solve the given matrix equation for the value of y.
\[y:\left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right) = 16(3x + 4)\]
Answer
597.3k+ views
Hint: In this question we will use row and column transformation arithmetic operations to simplify the matrix and after simplification we will calculate the determinant and after further simplification we will get our solution.
Given that:
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right) = 16(3x + 4)\]
Taking L.H.S, we will proceed further
\[ = \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right)\]
We will apply arithmetic operation on row second
$ro{w_2} \to ro{w_2} - ro{w_3}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
{x - x}&{x + y - x}&{x - (x + y)} \\
x&x&{x + y}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
x&x&{x + y}
\end{array}} \right) \\
\]
Now, we will do arithmetic operation third row
$ro{w_3} \to ro{w_3} - ro{w_1}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{x - (x + y)}&{x - x}&{x + y - x}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{ - y}&0&y
\end{array}} \right) \\
\]
After simplification we will try to find out its determinant using first column
$
= (x + y)\left| {\begin{array}{*{20}{c}}
y&{ - y} \\
0&y
\end{array}} \right| - 0\left| {\begin{array}{*{20}{c}}
x&x \\
0&y
\end{array}} \right| - y\left| {\begin{array}{*{20}{c}}
x&x \\
y&{ - y}
\end{array}} \right| \\
= (x + y)({y^2}) - y( - xy - yx) \\
= x{y^2} + {y^3} + 2x{y^2} \\
= {y^2}(y + 3x) \\
$
As we know
L.H.S=R.H.S
$
\Rightarrow {y^2}(y + 3x) = 16(3x + y) \\
\\
$
Solving for the value of y, we will get
$
\Rightarrow {y^2} = 16 \\
\Rightarrow y = \pm 4 \\
$
Hence, the value of $y = \pm 4$
Note: This problem is a combination of matrix and determinant. This problem can be directly solved by calculating the determinant of the given matrix and then comparing and simplifying but it takes a lot of time. It becomes simple to calculate the determinant when the matrix is reduced using arithmetic operations and one or more columns or rows are zero.
Given that:
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right) = 16(3x + 4)\]
Taking L.H.S, we will proceed further
\[ = \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right)\]
We will apply arithmetic operation on row second
$ro{w_2} \to ro{w_2} - ro{w_3}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
{x - x}&{x + y - x}&{x - (x + y)} \\
x&x&{x + y}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
x&x&{x + y}
\end{array}} \right) \\
\]
Now, we will do arithmetic operation third row
$ro{w_3} \to ro{w_3} - ro{w_1}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{x - (x + y)}&{x - x}&{x + y - x}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{ - y}&0&y
\end{array}} \right) \\
\]
After simplification we will try to find out its determinant using first column
$
= (x + y)\left| {\begin{array}{*{20}{c}}
y&{ - y} \\
0&y
\end{array}} \right| - 0\left| {\begin{array}{*{20}{c}}
x&x \\
0&y
\end{array}} \right| - y\left| {\begin{array}{*{20}{c}}
x&x \\
y&{ - y}
\end{array}} \right| \\
= (x + y)({y^2}) - y( - xy - yx) \\
= x{y^2} + {y^3} + 2x{y^2} \\
= {y^2}(y + 3x) \\
$
As we know
L.H.S=R.H.S
$
\Rightarrow {y^2}(y + 3x) = 16(3x + y) \\
\\
$
Solving for the value of y, we will get
$
\Rightarrow {y^2} = 16 \\
\Rightarrow y = \pm 4 \\
$
Hence, the value of $y = \pm 4$
Note: This problem is a combination of matrix and determinant. This problem can be directly solved by calculating the determinant of the given matrix and then comparing and simplifying but it takes a lot of time. It becomes simple to calculate the determinant when the matrix is reduced using arithmetic operations and one or more columns or rows are zero.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
What is the difference between lightdependent and lightindependent class 11 biology CBSE

How would you explain how the lightindependent reaction class 11 biology CBSE

How are lightdependent and lightindependent reactions class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

10 examples of friction in our daily life

