
Solve the given matrix equation for the value of y.
\[y:\left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right) = 16(3x + 4)\]
Answer
619.8k+ views
Hint: In this question we will use row and column transformation arithmetic operations to simplify the matrix and after simplification we will calculate the determinant and after further simplification we will get our solution.
Given that:
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right) = 16(3x + 4)\]
Taking L.H.S, we will proceed further
\[ = \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right)\]
We will apply arithmetic operation on row second
$ro{w_2} \to ro{w_2} - ro{w_3}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
{x - x}&{x + y - x}&{x - (x + y)} \\
x&x&{x + y}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
x&x&{x + y}
\end{array}} \right) \\
\]
Now, we will do arithmetic operation third row
$ro{w_3} \to ro{w_3} - ro{w_1}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{x - (x + y)}&{x - x}&{x + y - x}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{ - y}&0&y
\end{array}} \right) \\
\]
After simplification we will try to find out its determinant using first column
$
= (x + y)\left| {\begin{array}{*{20}{c}}
y&{ - y} \\
0&y
\end{array}} \right| - 0\left| {\begin{array}{*{20}{c}}
x&x \\
0&y
\end{array}} \right| - y\left| {\begin{array}{*{20}{c}}
x&x \\
y&{ - y}
\end{array}} \right| \\
= (x + y)({y^2}) - y( - xy - yx) \\
= x{y^2} + {y^3} + 2x{y^2} \\
= {y^2}(y + 3x) \\
$
As we know
L.H.S=R.H.S
$
\Rightarrow {y^2}(y + 3x) = 16(3x + y) \\
\\
$
Solving for the value of y, we will get
$
\Rightarrow {y^2} = 16 \\
\Rightarrow y = \pm 4 \\
$
Hence, the value of $y = \pm 4$
Note: This problem is a combination of matrix and determinant. This problem can be directly solved by calculating the determinant of the given matrix and then comparing and simplifying but it takes a lot of time. It becomes simple to calculate the determinant when the matrix is reduced using arithmetic operations and one or more columns or rows are zero.
Given that:
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right) = 16(3x + 4)\]
Taking L.H.S, we will proceed further
\[ = \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
x&{x + y}&x \\
x&x&{x + y}
\end{array}} \right)\]
We will apply arithmetic operation on row second
$ro{w_2} \to ro{w_2} - ro{w_3}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
{x - x}&{x + y - x}&{x - (x + y)} \\
x&x&{x + y}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
x&x&{x + y}
\end{array}} \right) \\
\]
Now, we will do arithmetic operation third row
$ro{w_3} \to ro{w_3} - ro{w_1}$
\[
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{x - (x + y)}&{x - x}&{x + y - x}
\end{array}} \right) \\
= \left( {\begin{array}{*{20}{c}}
{x + y}&x&x \\
0&y&{ - y)} \\
{ - y}&0&y
\end{array}} \right) \\
\]
After simplification we will try to find out its determinant using first column
$
= (x + y)\left| {\begin{array}{*{20}{c}}
y&{ - y} \\
0&y
\end{array}} \right| - 0\left| {\begin{array}{*{20}{c}}
x&x \\
0&y
\end{array}} \right| - y\left| {\begin{array}{*{20}{c}}
x&x \\
y&{ - y}
\end{array}} \right| \\
= (x + y)({y^2}) - y( - xy - yx) \\
= x{y^2} + {y^3} + 2x{y^2} \\
= {y^2}(y + 3x) \\
$
As we know
L.H.S=R.H.S
$
\Rightarrow {y^2}(y + 3x) = 16(3x + y) \\
\\
$
Solving for the value of y, we will get
$
\Rightarrow {y^2} = 16 \\
\Rightarrow y = \pm 4 \\
$
Hence, the value of $y = \pm 4$
Note: This problem is a combination of matrix and determinant. This problem can be directly solved by calculating the determinant of the given matrix and then comparing and simplifying but it takes a lot of time. It becomes simple to calculate the determinant when the matrix is reduced using arithmetic operations and one or more columns or rows are zero.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

