Answer

Verified

452.7k+ views

Hint: First apply the limit, and check if it evaluates out to an indeterminate form. We can see that, on substituting for the limiting value, it comes out to be in the form of$\dfrac{0}{0}$. So you can apply L’Hopital rule followed by applying the limit, and doing so, you will get the answer.

Now we have given in the question that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-\cos 2x)}{x}$.

So now let us apply the limit $\underset{x\to 0}{\mathop{\lim }}\,$ in $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-\cos 2x)}{x}$

So applying limit we get,

$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-\cos 2x)}{x}=\dfrac{0}{0}$

Thus, we end up with $\dfrac{0}{0}$, which is an indeterminate form.

The L’Hopital Rule is used to circumvent the common indeterminate forms $\dfrac{0}{0}$ and $\dfrac{\infty }{\infty }$ when computing limits.

L'Hopital rule is the definitive way to simplify the evaluation of limits. It does not directly evaluate limits, but only simplifies evaluation if used appropriately.

This introduces what is called an indeterminate form (there is another, infinity over infinity, but we don't have to worry about that one for this problem).

The differentiation of the numerator and denominator often simplifies the quotient or converts it to a limit that can be evaluated directly.

When direct substitution yields an indeterminate form, we can use L'Hopital rule,

So for this, we can use L’Hopital rule, that is,

If \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0}or\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{\pm \infty }{\pm \infty }\] then \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]

Note that this is not the same as the Product Rule; rather, it means that the limit of the derivative of $f(x)$ over the derivative of $g(x)$ will be the same as the limit of $f(x)$ over $g(x)$.

So here, we can apply the L'Hopital rule.

Also, here we have to use the chain rule.

The chain rule tells us how to find the derivative of a composite function.

The chain rule states that the derivative of $f(g(x))$ is ${{f}^{'}}(g(x))\times {{g}^{'}}(x)$. In other words, it helps us differentiate composite functions.

So differentiation of $f(g(x))={{f}^{'}}(g(x))\times {{g}^{'}}(x)$,

So applying L’Hopital Rule once, and applying the chain rule of differentiation for the numerator, we get:

$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(0-(-2\sin 2x))}{1}$

So simplifying the above in a simple manner we get,

$\underset{x\to 0}{\mathop{\lim }}\,2\sin 2x$

So now applying limit we get,

$2\sin (0)=0$,

So we get the solution as,

$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-\cos 2x)}{x}=0$

Note: Properly use L’Hopital rule. You should know when to use it. In short L’Hopital rule is \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0}or\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{\pm \infty }{\pm \infty }\] then \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]. You should be familiar with the chain rule. The differentiation of the numerator and denominator often simplifies the quotient or converts it to a limit that can be evaluated directly.

Now we have given in the question that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-\cos 2x)}{x}$.

So now let us apply the limit $\underset{x\to 0}{\mathop{\lim }}\,$ in $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-\cos 2x)}{x}$

So applying limit we get,

$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-\cos 2x)}{x}=\dfrac{0}{0}$

Thus, we end up with $\dfrac{0}{0}$, which is an indeterminate form.

The L’Hopital Rule is used to circumvent the common indeterminate forms $\dfrac{0}{0}$ and $\dfrac{\infty }{\infty }$ when computing limits.

L'Hopital rule is the definitive way to simplify the evaluation of limits. It does not directly evaluate limits, but only simplifies evaluation if used appropriately.

This introduces what is called an indeterminate form (there is another, infinity over infinity, but we don't have to worry about that one for this problem).

The differentiation of the numerator and denominator often simplifies the quotient or converts it to a limit that can be evaluated directly.

When direct substitution yields an indeterminate form, we can use L'Hopital rule,

So for this, we can use L’Hopital rule, that is,

If \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0}or\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{\pm \infty }{\pm \infty }\] then \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]

Note that this is not the same as the Product Rule; rather, it means that the limit of the derivative of $f(x)$ over the derivative of $g(x)$ will be the same as the limit of $f(x)$ over $g(x)$.

So here, we can apply the L'Hopital rule.

Also, here we have to use the chain rule.

The chain rule tells us how to find the derivative of a composite function.

The chain rule states that the derivative of $f(g(x))$ is ${{f}^{'}}(g(x))\times {{g}^{'}}(x)$. In other words, it helps us differentiate composite functions.

So differentiation of $f(g(x))={{f}^{'}}(g(x))\times {{g}^{'}}(x)$,

So applying L’Hopital Rule once, and applying the chain rule of differentiation for the numerator, we get:

$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(0-(-2\sin 2x))}{1}$

So simplifying the above in a simple manner we get,

$\underset{x\to 0}{\mathop{\lim }}\,2\sin 2x$

So now applying limit we get,

$2\sin (0)=0$,

So we get the solution as,

$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-\cos 2x)}{x}=0$

Note: Properly use L’Hopital rule. You should know when to use it. In short L’Hopital rule is \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0}or\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{\pm \infty }{\pm \infty }\] then \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{{f}'\left( x \right)}{{g}'\left( x \right)}\]. You should be familiar with the chain rule. The differentiation of the numerator and denominator often simplifies the quotient or converts it to a limit that can be evaluated directly.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers