
Solve the given equation: \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\]
Answer
595.5k+ views
Hint: Simplify the given equation using laws of exponents such as \[{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}\] and \[{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}\]. Also, use properties of log function such as \[\log \left( xy \right)=\log x+\log y\] and ${{\log }_{a}}{{a}^{b}}=b$ to find the value of x which satisfies the given equation.
Complete step-by-step answer:
We have the equation \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\]. We have to find the value of x which satisfies the given equation.
We will simplify the equation using properties of log function and laws of exponents.
We will firstly simplify the right side of the equation.
We can write 8 as \[8={{2}^{3}}\].
Thus, we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{{{2}^{3}}}}={{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}.....\left( 1 \right)\].
We know that ${{\log }_{a}}{{a}^{b}}=b$.
Substituting $a=\dfrac{1}{\sqrt{2}},b=3$ in the above equation, we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=3.....\left( 2 \right)\].
Substituting, equation (20 in equation (1), we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}={{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=3.....\left( 3 \right)\]
We will now simplify the left side of the equation \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\].
We can rewrite \[{{4}^{x+1}}+4\] as \[{{4}^{x+1}}+4={{4}^{x}}\times 4+4=4\left( {{4}^{x}}+1 \right)\] using \[{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times 4\left( {{4}^{x}}+1 \right)\].
We know that \[4={{2}^{2}}\] and \[\log {{a}^{b}}=b\log a\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times {{2}^{2}}\left( {{4}^{x}}+1 \right)\].
We know that \[{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log {{2}^{3}}\left( {{4}^{x}}+1 \right)\].
We know that \[\log \left( {{a}^{b}} \right)=b\log a\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times 4\left( {{4}^{x}}+1 \right)=3\log 2\left( {{4}^{x}}+1 \right)\].
So, we have \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)=3\log 2\left( {{4}^{x}}+1 \right)\log 2\left( {{4}^{x}}+1 \right)=3{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}.....\left( 4 \right)\].
We know that \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\].
Substituting equation (3) and (4) in the above equation, we have \[3{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}=3\].
Rearranging the terms, we have \[{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}=1\].
Taking the square root on both sides, we have \[\log 2\left( {{4}^{x}}+1 \right)=\pm 1\].
We know that \[\log x=y\] can be written as \[x={{e}^{y}}\].
Thus, we can rewrite \[\log 2\left( {{4}^{x}}+1 \right)=\pm 1\] as \[2\left( {{4}^{x}}+1 \right)={{e}^{\pm 1}}\].
Rearranging the terms, we have \[{{4}^{x}}+1=\dfrac{{{e}^{\pm 1}}}{2}\].
Thus, we have \[{{4}^{x}}=\dfrac{{{e}^{\pm 1}}}{2}-1\].
Taking log on both sides, we have \[\log \left( {{4}^{x}} \right)=\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)=x\log 4\].
Rearranging the terms, we have \[x=\dfrac{\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)}{\log 4}\].
Hence, the value of x which satisfies the given equation is \[x=\dfrac{\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)}{\log 4}\].
Note:One must know about the laws of exponents and logarithmic properties. We can’t solve this question without using them. Also, the value of ‘x’ which satisfies the given equation is a real number.
Complete step-by-step answer:
We have the equation \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\]. We have to find the value of x which satisfies the given equation.
We will simplify the equation using properties of log function and laws of exponents.
We will firstly simplify the right side of the equation.
We can write 8 as \[8={{2}^{3}}\].
Thus, we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{{{2}^{3}}}}={{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}.....\left( 1 \right)\].
We know that ${{\log }_{a}}{{a}^{b}}=b$.
Substituting $a=\dfrac{1}{\sqrt{2}},b=3$ in the above equation, we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=3.....\left( 2 \right)\].
Substituting, equation (20 in equation (1), we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}={{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=3.....\left( 3 \right)\]
We will now simplify the left side of the equation \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\].
We can rewrite \[{{4}^{x+1}}+4\] as \[{{4}^{x+1}}+4={{4}^{x}}\times 4+4=4\left( {{4}^{x}}+1 \right)\] using \[{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times 4\left( {{4}^{x}}+1 \right)\].
We know that \[4={{2}^{2}}\] and \[\log {{a}^{b}}=b\log a\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times {{2}^{2}}\left( {{4}^{x}}+1 \right)\].
We know that \[{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log {{2}^{3}}\left( {{4}^{x}}+1 \right)\].
We know that \[\log \left( {{a}^{b}} \right)=b\log a\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times 4\left( {{4}^{x}}+1 \right)=3\log 2\left( {{4}^{x}}+1 \right)\].
So, we have \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)=3\log 2\left( {{4}^{x}}+1 \right)\log 2\left( {{4}^{x}}+1 \right)=3{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}.....\left( 4 \right)\].
We know that \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\].
Substituting equation (3) and (4) in the above equation, we have \[3{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}=3\].
Rearranging the terms, we have \[{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}=1\].
Taking the square root on both sides, we have \[\log 2\left( {{4}^{x}}+1 \right)=\pm 1\].
We know that \[\log x=y\] can be written as \[x={{e}^{y}}\].
Thus, we can rewrite \[\log 2\left( {{4}^{x}}+1 \right)=\pm 1\] as \[2\left( {{4}^{x}}+1 \right)={{e}^{\pm 1}}\].
Rearranging the terms, we have \[{{4}^{x}}+1=\dfrac{{{e}^{\pm 1}}}{2}\].
Thus, we have \[{{4}^{x}}=\dfrac{{{e}^{\pm 1}}}{2}-1\].
Taking log on both sides, we have \[\log \left( {{4}^{x}} \right)=\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)=x\log 4\].
Rearranging the terms, we have \[x=\dfrac{\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)}{\log 4}\].
Hence, the value of x which satisfies the given equation is \[x=\dfrac{\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)}{\log 4}\].
Note:One must know about the laws of exponents and logarithmic properties. We can’t solve this question without using them. Also, the value of ‘x’ which satisfies the given equation is a real number.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

