
Solve the given equation: \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\]
Answer
581.4k+ views
Hint: Simplify the given equation using laws of exponents such as \[{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}\] and \[{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}\]. Also, use properties of log function such as \[\log \left( xy \right)=\log x+\log y\] and ${{\log }_{a}}{{a}^{b}}=b$ to find the value of x which satisfies the given equation.
Complete step-by-step answer:
We have the equation \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\]. We have to find the value of x which satisfies the given equation.
We will simplify the equation using properties of log function and laws of exponents.
We will firstly simplify the right side of the equation.
We can write 8 as \[8={{2}^{3}}\].
Thus, we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{{{2}^{3}}}}={{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}.....\left( 1 \right)\].
We know that ${{\log }_{a}}{{a}^{b}}=b$.
Substituting $a=\dfrac{1}{\sqrt{2}},b=3$ in the above equation, we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=3.....\left( 2 \right)\].
Substituting, equation (20 in equation (1), we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}={{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=3.....\left( 3 \right)\]
We will now simplify the left side of the equation \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\].
We can rewrite \[{{4}^{x+1}}+4\] as \[{{4}^{x+1}}+4={{4}^{x}}\times 4+4=4\left( {{4}^{x}}+1 \right)\] using \[{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times 4\left( {{4}^{x}}+1 \right)\].
We know that \[4={{2}^{2}}\] and \[\log {{a}^{b}}=b\log a\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times {{2}^{2}}\left( {{4}^{x}}+1 \right)\].
We know that \[{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log {{2}^{3}}\left( {{4}^{x}}+1 \right)\].
We know that \[\log \left( {{a}^{b}} \right)=b\log a\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times 4\left( {{4}^{x}}+1 \right)=3\log 2\left( {{4}^{x}}+1 \right)\].
So, we have \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)=3\log 2\left( {{4}^{x}}+1 \right)\log 2\left( {{4}^{x}}+1 \right)=3{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}.....\left( 4 \right)\].
We know that \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\].
Substituting equation (3) and (4) in the above equation, we have \[3{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}=3\].
Rearranging the terms, we have \[{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}=1\].
Taking the square root on both sides, we have \[\log 2\left( {{4}^{x}}+1 \right)=\pm 1\].
We know that \[\log x=y\] can be written as \[x={{e}^{y}}\].
Thus, we can rewrite \[\log 2\left( {{4}^{x}}+1 \right)=\pm 1\] as \[2\left( {{4}^{x}}+1 \right)={{e}^{\pm 1}}\].
Rearranging the terms, we have \[{{4}^{x}}+1=\dfrac{{{e}^{\pm 1}}}{2}\].
Thus, we have \[{{4}^{x}}=\dfrac{{{e}^{\pm 1}}}{2}-1\].
Taking log on both sides, we have \[\log \left( {{4}^{x}} \right)=\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)=x\log 4\].
Rearranging the terms, we have \[x=\dfrac{\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)}{\log 4}\].
Hence, the value of x which satisfies the given equation is \[x=\dfrac{\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)}{\log 4}\].
Note:One must know about the laws of exponents and logarithmic properties. We can’t solve this question without using them. Also, the value of ‘x’ which satisfies the given equation is a real number.
Complete step-by-step answer:
We have the equation \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\]. We have to find the value of x which satisfies the given equation.
We will simplify the equation using properties of log function and laws of exponents.
We will firstly simplify the right side of the equation.
We can write 8 as \[8={{2}^{3}}\].
Thus, we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{{{2}^{3}}}}={{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}.....\left( 1 \right)\].
We know that ${{\log }_{a}}{{a}^{b}}=b$.
Substituting $a=\dfrac{1}{\sqrt{2}},b=3$ in the above equation, we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=3.....\left( 2 \right)\].
Substituting, equation (20 in equation (1), we have \[{{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}={{\log }_{\dfrac{1}{\sqrt{2}}}}{{\left( \dfrac{1}{\sqrt{2}} \right)}^{3}}=3.....\left( 3 \right)\]
We will now simplify the left side of the equation \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\].
We can rewrite \[{{4}^{x+1}}+4\] as \[{{4}^{x+1}}+4={{4}^{x}}\times 4+4=4\left( {{4}^{x}}+1 \right)\] using \[{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times 4\left( {{4}^{x}}+1 \right)\].
We know that \[4={{2}^{2}}\] and \[\log {{a}^{b}}=b\log a\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times {{2}^{2}}\left( {{4}^{x}}+1 \right)\].
We know that \[{{a}^{b}}\times {{a}^{c}}={{a}^{b+c}}\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log {{2}^{3}}\left( {{4}^{x}}+1 \right)\].
We know that \[\log \left( {{a}^{b}} \right)=b\log a\].
Thus, we have \[\log 2\left( {{4}^{x+1}}+4 \right)=\log 2\times 4\left( {{4}^{x}}+1 \right)=3\log 2\left( {{4}^{x}}+1 \right)\].
So, we have \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)=3\log 2\left( {{4}^{x}}+1 \right)\log 2\left( {{4}^{x}}+1 \right)=3{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}.....\left( 4 \right)\].
We know that \[\log 2\left( {{4}^{x+1}}+4 \right)\log 2\left( {{4}^{x}}+1 \right)={{\log }_{\dfrac{1}{\sqrt{2}}}}\sqrt{\dfrac{1}{8}}\].
Substituting equation (3) and (4) in the above equation, we have \[3{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}=3\].
Rearranging the terms, we have \[{{\left( \log 2\left( {{4}^{x}}+1 \right) \right)}^{2}}=1\].
Taking the square root on both sides, we have \[\log 2\left( {{4}^{x}}+1 \right)=\pm 1\].
We know that \[\log x=y\] can be written as \[x={{e}^{y}}\].
Thus, we can rewrite \[\log 2\left( {{4}^{x}}+1 \right)=\pm 1\] as \[2\left( {{4}^{x}}+1 \right)={{e}^{\pm 1}}\].
Rearranging the terms, we have \[{{4}^{x}}+1=\dfrac{{{e}^{\pm 1}}}{2}\].
Thus, we have \[{{4}^{x}}=\dfrac{{{e}^{\pm 1}}}{2}-1\].
Taking log on both sides, we have \[\log \left( {{4}^{x}} \right)=\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)=x\log 4\].
Rearranging the terms, we have \[x=\dfrac{\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)}{\log 4}\].
Hence, the value of x which satisfies the given equation is \[x=\dfrac{\log \left( \dfrac{{{e}^{\pm 1}}}{2}-1 \right)}{\log 4}\].
Note:One must know about the laws of exponents and logarithmic properties. We can’t solve this question without using them. Also, the value of ‘x’ which satisfies the given equation is a real number.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

