
Solve the given equation: If ${\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \frac{\pi }{2}$
,then the value of x is equal to
A. 0,$\frac{1}{2}$
B. 1, $\frac{1}{2}$
C. 0
D.$\frac{1}{2}$
Answer
608.1k+ views
Hint-Make use of the formula $\sin \left( {\frac{\pi }{2} + \theta } \right) = \cos
\theta $ and solve the problem
The given equation is ${\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \frac{\pi }{2}$,
\[{\text{On shifting 2}}{\sin ^{ - 1}}x{\text{ to the RHS we get}}\]
${\sin ^{ - 1}}(1 - x) = \frac{\pi }{2} + 2{\sin ^{ - 1}}x$
${\text{Further on shifting }}{\sin ^{ - 1}}{\text{ to the RHS, we get}}$
$\left( {1 - x} \right) = \sin \left( {\frac{\pi }{2} + 2{{\sin }^{ - 1}}x} \right)$
We know from the formula that $\sin \left( {\frac{\pi }{2} + x} \right) = \cos x$
\[So,{\text{ }}we{\text{ }}can{\text{ }}write{\text{ }}the{\text{ }}equation{\text{ }}as\;\;\;the{\text{ }}equation{\text{ }}as\;\;\;(1 - x) = \cos (2{\sin ^{ - 1}}x)\] $But{\text{ we
know the result which says 2}}{\sin ^{ - 1}}x = {\cos ^{ - 1}}(1 - 2{x^2})$
$\begin{gathered}
{\text{So, from this we get the equation to be }} \\
\Rightarrow {\text{(1 - x) = cos[}}{\cos ^{ - 1}}(1 - 2{x^2})] \\
\end{gathered} $
$We{\text{ know another formula which says cos(}}{\cos ^{ - 1}}x) = x$
$\begin{gathered}
{\text{Using this result , we can now write the equation as }} \\
\Rightarrow {\text{(1 - x) = 1 - 2}}{{\text{x}}^2} \\
\Rightarrow 2{x^2} - x = 0 \\
\Rightarrow x(2x - 1) = 0 \\
\Rightarrow x = 0{\text{ or }}x = \frac{1}{{2,}} \\
If{\text{ x = }}\frac{1}{2}, \\
LHS = {\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\frac{1}{2} - 2{\sin ^{ - 1}}\frac{1}{2} =
- \frac{\pi }{6} \\
But{\text{ RHS = }}\frac{\pi }{2} \\
LHS \ne RHS \\
So,x = \frac{1}{2}{\text{ is not a solution to the given equation}} \\
\end{gathered} $
$\begin{gathered}
If{\text{ x = 0,}} \\
We{\text{ get LHS = }}{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = {\sin ^{ - 1}}1 - 2{\sin ^{ - 1}}0 =
\frac{\pi }{2} - 0 = \frac{\pi }{2} \\
\end{gathered} $$So,we{\text{ have LHS = RHS = }}\frac{\pi }{2}$
So, we can write x=0 is the solution for this given equation
So, option C is the correct answer
Note:Whenever we are solving these kinds of problems, we have to always choose the value
of x such that LHS=RHS. If we get any value of x such that we won't get LHS=RHS, then such
value of x should not be considered.
\theta $ and solve the problem
The given equation is ${\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \frac{\pi }{2}$,
\[{\text{On shifting 2}}{\sin ^{ - 1}}x{\text{ to the RHS we get}}\]
${\sin ^{ - 1}}(1 - x) = \frac{\pi }{2} + 2{\sin ^{ - 1}}x$
${\text{Further on shifting }}{\sin ^{ - 1}}{\text{ to the RHS, we get}}$
$\left( {1 - x} \right) = \sin \left( {\frac{\pi }{2} + 2{{\sin }^{ - 1}}x} \right)$
We know from the formula that $\sin \left( {\frac{\pi }{2} + x} \right) = \cos x$
\[So,{\text{ }}we{\text{ }}can{\text{ }}write{\text{ }}the{\text{ }}equation{\text{ }}as\;\;\;the{\text{ }}equation{\text{ }}as\;\;\;(1 - x) = \cos (2{\sin ^{ - 1}}x)\] $But{\text{ we
know the result which says 2}}{\sin ^{ - 1}}x = {\cos ^{ - 1}}(1 - 2{x^2})$
$\begin{gathered}
{\text{So, from this we get the equation to be }} \\
\Rightarrow {\text{(1 - x) = cos[}}{\cos ^{ - 1}}(1 - 2{x^2})] \\
\end{gathered} $
$We{\text{ know another formula which says cos(}}{\cos ^{ - 1}}x) = x$
$\begin{gathered}
{\text{Using this result , we can now write the equation as }} \\
\Rightarrow {\text{(1 - x) = 1 - 2}}{{\text{x}}^2} \\
\Rightarrow 2{x^2} - x = 0 \\
\Rightarrow x(2x - 1) = 0 \\
\Rightarrow x = 0{\text{ or }}x = \frac{1}{{2,}} \\
If{\text{ x = }}\frac{1}{2}, \\
LHS = {\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\frac{1}{2} - 2{\sin ^{ - 1}}\frac{1}{2} =
- \frac{\pi }{6} \\
But{\text{ RHS = }}\frac{\pi }{2} \\
LHS \ne RHS \\
So,x = \frac{1}{2}{\text{ is not a solution to the given equation}} \\
\end{gathered} $
$\begin{gathered}
If{\text{ x = 0,}} \\
We{\text{ get LHS = }}{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = {\sin ^{ - 1}}1 - 2{\sin ^{ - 1}}0 =
\frac{\pi }{2} - 0 = \frac{\pi }{2} \\
\end{gathered} $$So,we{\text{ have LHS = RHS = }}\frac{\pi }{2}$
So, we can write x=0 is the solution for this given equation
So, option C is the correct answer
Note:Whenever we are solving these kinds of problems, we have to always choose the value
of x such that LHS=RHS. If we get any value of x such that we won't get LHS=RHS, then such
value of x should not be considered.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

