![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Solve the given equation: If ${\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \frac{\pi }{2}$
,then the value of x is equal to
A. 0,$\frac{1}{2}$
B. 1, $\frac{1}{2}$
C. 0
D.$\frac{1}{2}$
Answer
506.7k+ views
Hint-Make use of the formula $\sin \left( {\frac{\pi }{2} + \theta } \right) = \cos
\theta $ and solve the problem
The given equation is ${\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \frac{\pi }{2}$,
\[{\text{On shifting 2}}{\sin ^{ - 1}}x{\text{ to the RHS we get}}\]
${\sin ^{ - 1}}(1 - x) = \frac{\pi }{2} + 2{\sin ^{ - 1}}x$
${\text{Further on shifting }}{\sin ^{ - 1}}{\text{ to the RHS, we get}}$
$\left( {1 - x} \right) = \sin \left( {\frac{\pi }{2} + 2{{\sin }^{ - 1}}x} \right)$
We know from the formula that $\sin \left( {\frac{\pi }{2} + x} \right) = \cos x$
\[So,{\text{ }}we{\text{ }}can{\text{ }}write{\text{ }}the{\text{ }}equation{\text{ }}as\;\;\;the{\text{ }}equation{\text{ }}as\;\;\;(1 - x) = \cos (2{\sin ^{ - 1}}x)\] $But{\text{ we
know the result which says 2}}{\sin ^{ - 1}}x = {\cos ^{ - 1}}(1 - 2{x^2})$
$\begin{gathered}
{\text{So, from this we get the equation to be }} \\
\Rightarrow {\text{(1 - x) = cos[}}{\cos ^{ - 1}}(1 - 2{x^2})] \\
\end{gathered} $
$We{\text{ know another formula which says cos(}}{\cos ^{ - 1}}x) = x$
$\begin{gathered}
{\text{Using this result , we can now write the equation as }} \\
\Rightarrow {\text{(1 - x) = 1 - 2}}{{\text{x}}^2} \\
\Rightarrow 2{x^2} - x = 0 \\
\Rightarrow x(2x - 1) = 0 \\
\Rightarrow x = 0{\text{ or }}x = \frac{1}{{2,}} \\
If{\text{ x = }}\frac{1}{2}, \\
LHS = {\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\frac{1}{2} - 2{\sin ^{ - 1}}\frac{1}{2} =
- \frac{\pi }{6} \\
But{\text{ RHS = }}\frac{\pi }{2} \\
LHS \ne RHS \\
So,x = \frac{1}{2}{\text{ is not a solution to the given equation}} \\
\end{gathered} $
$\begin{gathered}
If{\text{ x = 0,}} \\
We{\text{ get LHS = }}{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = {\sin ^{ - 1}}1 - 2{\sin ^{ - 1}}0 =
\frac{\pi }{2} - 0 = \frac{\pi }{2} \\
\end{gathered} $$So,we{\text{ have LHS = RHS = }}\frac{\pi }{2}$
So, we can write x=0 is the solution for this given equation
So, option C is the correct answer
Note:Whenever we are solving these kinds of problems, we have to always choose the value
of x such that LHS=RHS. If we get any value of x such that we won't get LHS=RHS, then such
value of x should not be considered.
\theta $ and solve the problem
The given equation is ${\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = \frac{\pi }{2}$,
\[{\text{On shifting 2}}{\sin ^{ - 1}}x{\text{ to the RHS we get}}\]
${\sin ^{ - 1}}(1 - x) = \frac{\pi }{2} + 2{\sin ^{ - 1}}x$
${\text{Further on shifting }}{\sin ^{ - 1}}{\text{ to the RHS, we get}}$
$\left( {1 - x} \right) = \sin \left( {\frac{\pi }{2} + 2{{\sin }^{ - 1}}x} \right)$
We know from the formula that $\sin \left( {\frac{\pi }{2} + x} \right) = \cos x$
\[So,{\text{ }}we{\text{ }}can{\text{ }}write{\text{ }}the{\text{ }}equation{\text{ }}as\;\;\;the{\text{ }}equation{\text{ }}as\;\;\;(1 - x) = \cos (2{\sin ^{ - 1}}x)\] $But{\text{ we
know the result which says 2}}{\sin ^{ - 1}}x = {\cos ^{ - 1}}(1 - 2{x^2})$
$\begin{gathered}
{\text{So, from this we get the equation to be }} \\
\Rightarrow {\text{(1 - x) = cos[}}{\cos ^{ - 1}}(1 - 2{x^2})] \\
\end{gathered} $
$We{\text{ know another formula which says cos(}}{\cos ^{ - 1}}x) = x$
$\begin{gathered}
{\text{Using this result , we can now write the equation as }} \\
\Rightarrow {\text{(1 - x) = 1 - 2}}{{\text{x}}^2} \\
\Rightarrow 2{x^2} - x = 0 \\
\Rightarrow x(2x - 1) = 0 \\
\Rightarrow x = 0{\text{ or }}x = \frac{1}{{2,}} \\
If{\text{ x = }}\frac{1}{2}, \\
LHS = {\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\frac{1}{2} - 2{\sin ^{ - 1}}\frac{1}{2} =
- \frac{\pi }{6} \\
But{\text{ RHS = }}\frac{\pi }{2} \\
LHS \ne RHS \\
So,x = \frac{1}{2}{\text{ is not a solution to the given equation}} \\
\end{gathered} $
$\begin{gathered}
If{\text{ x = 0,}} \\
We{\text{ get LHS = }}{\sin ^{ - 1}}(1 - x) - 2{\sin ^{ - 1}}x = {\sin ^{ - 1}}1 - 2{\sin ^{ - 1}}0 =
\frac{\pi }{2} - 0 = \frac{\pi }{2} \\
\end{gathered} $$So,we{\text{ have LHS = RHS = }}\frac{\pi }{2}$
So, we can write x=0 is the solution for this given equation
So, option C is the correct answer
Note:Whenever we are solving these kinds of problems, we have to always choose the value
of x such that LHS=RHS. If we get any value of x such that we won't get LHS=RHS, then such
value of x should not be considered.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Computer Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Maths: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Social Science: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Economics: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Business Studies: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What are the limitations of Rutherfords model of an class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Maximum speed of a particle in simple harmonic motion class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)