Solve the given equation:
$\dfrac{7+\sqrt{5}}{7-\sqrt{5}}-\dfrac{7-\sqrt{5}}{7+\sqrt{5}}=a+\dfrac{7}{11}b\sqrt{5}$
Last updated date: 23rd Mar 2023
•
Total views: 306.3k
•
Views today: 3.83k
Answer
306.3k+ views
Hint: We are given $\dfrac{7+\sqrt{5}}{7-\sqrt{5}}-\dfrac{7-\sqrt{5}}{7+\sqrt{5}}=a+\dfrac{7}{11}b\sqrt{5}$ , so take LHS and simplify it. After that, compare LHS and RHS, you will get the value of $a$ and $b$ .
Complete step-by-step Solution:
In algebra, root rationalization is a process by which radicals in the denominator of an algebraic fraction are eliminated.
This technique may be extended to any algebraic denominator, by multiplying the numerator and the denominator by all algebraic conjugates of the denominator, and expanding the new denominator into the norm of the old denominator. However, except in special cases, the resulting fractions may have huge numerators and denominators, and, therefore, the technique is generally used only in the above elementary cases.
In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power.
Sometimes the denominator might be more complicated and include other numbers as well as the surd.
If this is the case, you need to multiply the fraction by a number that will cancel out the surd. Remember to multiply the numerator by the same number or you will change the value of the fraction.
Rationalizing an expression means getting rid of any surds fromIn elementary the bottom (denominator) of fractions.
Usually when you are asked to simplify an expression it means you should also rationalize it.
A fraction whose denominator is a surd can be simplified by making the denominator rational. This process is called rationalizing the denominator.
If the denominator has just one term that is the surd, the denominator can be rationalized by multiplying the numerator and denominator by that surd.
Now we have been given $\dfrac{7+\sqrt{5}}{7-\sqrt{5}}-\dfrac{7-\sqrt{5}}{7+\sqrt{5}}=a+\dfrac{7}{11}b\sqrt{5}$ .
So taking LHS,
LHS$=\dfrac{7+\sqrt{5}}{7-\sqrt{5}}-\dfrac{7-\sqrt{5}}{7+\sqrt{5}}$
Now simplifying we get,
LHS\[=\dfrac{{{\left( 7+\sqrt{5} \right)}^{2}}-{{\left( 7-\sqrt{5} \right)}^{2}}}{\left( 7+\sqrt{5} \right)\left( 7-\sqrt{5} \right)}\]
\[\begin{align}
& =\dfrac{49+5+14\sqrt{5}-(49+5-14\sqrt{5})}{\left( 49-5 \right)} \\
& =\dfrac{28\sqrt{5}}{44} \\
& =\dfrac{7\sqrt{5}}{11} \\
\end{align}\]
We get, LHS \[=\dfrac{7\sqrt{5}}{11}\].
Comparing with RHS we get,
$a+\dfrac{7}{11}b\sqrt{5}=0+\dfrac{7\sqrt{5}}{11}$
We get $a=0$ and $b=1$.
Note: Read the question carefully. Don’t confuse yourself while solving the problem. Also, take utmost care that no terms are missing. Do not jumble. While simplifying, do not make any silly mistakes. Your concept regarding rationalization should be clear.
Complete step-by-step Solution:
In algebra, root rationalization is a process by which radicals in the denominator of an algebraic fraction are eliminated.
This technique may be extended to any algebraic denominator, by multiplying the numerator and the denominator by all algebraic conjugates of the denominator, and expanding the new denominator into the norm of the old denominator. However, except in special cases, the resulting fractions may have huge numerators and denominators, and, therefore, the technique is generally used only in the above elementary cases.
In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions are algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power.
Sometimes the denominator might be more complicated and include other numbers as well as the surd.
If this is the case, you need to multiply the fraction by a number that will cancel out the surd. Remember to multiply the numerator by the same number or you will change the value of the fraction.
Rationalizing an expression means getting rid of any surds fromIn elementary the bottom (denominator) of fractions.
Usually when you are asked to simplify an expression it means you should also rationalize it.
A fraction whose denominator is a surd can be simplified by making the denominator rational. This process is called rationalizing the denominator.
If the denominator has just one term that is the surd, the denominator can be rationalized by multiplying the numerator and denominator by that surd.
Now we have been given $\dfrac{7+\sqrt{5}}{7-\sqrt{5}}-\dfrac{7-\sqrt{5}}{7+\sqrt{5}}=a+\dfrac{7}{11}b\sqrt{5}$ .
So taking LHS,
LHS$=\dfrac{7+\sqrt{5}}{7-\sqrt{5}}-\dfrac{7-\sqrt{5}}{7+\sqrt{5}}$
Now simplifying we get,
LHS\[=\dfrac{{{\left( 7+\sqrt{5} \right)}^{2}}-{{\left( 7-\sqrt{5} \right)}^{2}}}{\left( 7+\sqrt{5} \right)\left( 7-\sqrt{5} \right)}\]
\[\begin{align}
& =\dfrac{49+5+14\sqrt{5}-(49+5-14\sqrt{5})}{\left( 49-5 \right)} \\
& =\dfrac{28\sqrt{5}}{44} \\
& =\dfrac{7\sqrt{5}}{11} \\
\end{align}\]
We get, LHS \[=\dfrac{7\sqrt{5}}{11}\].
Comparing with RHS we get,
$a+\dfrac{7}{11}b\sqrt{5}=0+\dfrac{7\sqrt{5}}{11}$
We get $a=0$ and $b=1$.
Note: Read the question carefully. Don’t confuse yourself while solving the problem. Also, take utmost care that no terms are missing. Do not jumble. While simplifying, do not make any silly mistakes. Your concept regarding rationalization should be clear.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
