Answer
Verified
490.2k+ views
Hint: Let us plot the given equations in a coordinate plane to get the required value of x and y.
Complete step-by-step answer:
As we are asked to solve the given equations graphically.
So, we had to plot the equation on the graph.
For plotting a linear equation, we need at least 2 points through which the equation passes.
So, for our convenience we find those two points which lie on x-axis and y-axis and also satisfy the equation.
So, as we know that any point lying on the x-axis has y-coordinate equal to zero.
And, any point lying on the y-axis has x-coordinate equal to zero.
Given equations are,
2x – 3y = 1 (1)
4x – 3y + 1 = 0 (2)
So, let equation 1 passes through two points A (a, 0) and B (0, b).
And equation 2 passes through two points C (c, 0) and D (0, d).
Now finding the value of points A, B, C and D to plot them on the graph.
As point A (a, 0) lies on the equation 1. So, it must satisfy equation 1.
2a – 0 = 1
a = \[\dfrac{1}{2}\]
As point B (0, b) lies on the equation 1. So, it must satisfy equation 1.
0 – 3b = 1
b = \[\dfrac{{ - 1}}{3}\]
As point C (c, 0) lies on equation 2. So, it must satisfy equation 2.
4c – 0 + 1 = 0
c = \[\dfrac{{ - 1}}{4}\]
As point D (0, d) lies on equation 2. So, it must satisfy equation 2.
0 – 3d + 1 = 0
d = \[\dfrac{1}{3}\]
Now line joining points A\[\left( {\dfrac{1}{2},{\text{ 0}}} \right)\] and B\[\left( {0,{\text{ }}\dfrac{{ - 1}}{3}} \right)\] will be the equation 2x – 3y = 1.
And the line joining points C\[\left( {\dfrac{{ - 1}}{4},{\text{ 0}}} \right)\] and D\[\left( {0,{\text{ }}\dfrac{1}{3}} \right)\] will be the equation 4x – 3y + 1 = 0.
Now we can see from the above graph that both the given lines intersect each other at P (-1, -1).
So, the solution of the given equation will be x = -1, and y = -1.
Hence, the correct answer will be B.
Note: Whenever we come up with this type of problem then to plot any line on a coordinate plane first, we should find points where the equation of line intersects x and y axis. And after plotting those points in the graph we will clearly see the intersection points of all the equations. And this will be the required solution of the problem.
Complete step-by-step answer:
As we are asked to solve the given equations graphically.
So, we had to plot the equation on the graph.
For plotting a linear equation, we need at least 2 points through which the equation passes.
So, for our convenience we find those two points which lie on x-axis and y-axis and also satisfy the equation.
So, as we know that any point lying on the x-axis has y-coordinate equal to zero.
And, any point lying on the y-axis has x-coordinate equal to zero.
Given equations are,
2x – 3y = 1 (1)
4x – 3y + 1 = 0 (2)
So, let equation 1 passes through two points A (a, 0) and B (0, b).
And equation 2 passes through two points C (c, 0) and D (0, d).
Now finding the value of points A, B, C and D to plot them on the graph.
As point A (a, 0) lies on the equation 1. So, it must satisfy equation 1.
2a – 0 = 1
a = \[\dfrac{1}{2}\]
As point B (0, b) lies on the equation 1. So, it must satisfy equation 1.
0 – 3b = 1
b = \[\dfrac{{ - 1}}{3}\]
As point C (c, 0) lies on equation 2. So, it must satisfy equation 2.
4c – 0 + 1 = 0
c = \[\dfrac{{ - 1}}{4}\]
As point D (0, d) lies on equation 2. So, it must satisfy equation 2.
0 – 3d + 1 = 0
d = \[\dfrac{1}{3}\]
Now line joining points A\[\left( {\dfrac{1}{2},{\text{ 0}}} \right)\] and B\[\left( {0,{\text{ }}\dfrac{{ - 1}}{3}} \right)\] will be the equation 2x – 3y = 1.
And the line joining points C\[\left( {\dfrac{{ - 1}}{4},{\text{ 0}}} \right)\] and D\[\left( {0,{\text{ }}\dfrac{1}{3}} \right)\] will be the equation 4x – 3y + 1 = 0.
Now we can see from the above graph that both the given lines intersect each other at P (-1, -1).
So, the solution of the given equation will be x = -1, and y = -1.
Hence, the correct answer will be B.
Note: Whenever we come up with this type of problem then to plot any line on a coordinate plane first, we should find points where the equation of line intersects x and y axis. And after plotting those points in the graph we will clearly see the intersection points of all the equations. And this will be the required solution of the problem.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths