
Solve the following $\int{\sin 2x\cos 3x}dx$
Answer
470.7k+ views
Hint: We need to find the integral of the function $\sin 2x\cos 3x$ . We start to solve the question by multiplying and dividing the integral by 2. Then, we use the trigonometric formula $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$ to simplify the trigonometric function and integrate it to get the desired result.
Complete step by step solution:
Let $I$ be the value of the integral for the given function.
$\Rightarrow I=\int{\sin 2x\cos 3x}dx$
We are given a function and need to integrate it. We solve this question using the trigonometric formulae to simplify the function and then find the value of $I$ .
According to the question,
The integral of the function $\sin 2x\cos 3x$ is written as follows,
$\Rightarrow I=\int{\sin 2x\cos 3x}dx$
We need to multiply and divide by 2.
Multiplying and dividing by 2 on the right-hand side of the equation, we get,
$\Rightarrow I=\dfrac{1}{2}\times 2\int{\sin 2x\cos 3x}dx$
$\Rightarrow I=\dfrac{1}{2}\int{2\sin 2x\cos 3x}dx$
The above trigonometric function is of the form $2\sin A\cos B$
From trigonometry,
We know that $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$ .
Here,
The values of $A$ and $B$ are given as follows,
$A=2x;$
$B=3x$
Applying the above formula and substituting the values in the formula, we get,
$\Rightarrow I=\dfrac{1}{2}\int{\left( \sin \left( 2x+3x \right)+\sin \left( 2x-3x \right) \right)dx}$
Simplifying the value of the above equation, we get,
$\Rightarrow I=\dfrac{1}{2}\int{\left( \sin 5x+\sin \left( -x \right) \right)dx}$
From trigonometry,
We know that $\sin x$ is an odd function.
For any odd function,
$\Rightarrow f\left( x \right)=-f\left( x \right)$
Applying the same for the $\sin x$ function, we get,
$\Rightarrow \sin \left( -x \right)=-\sin x$
Substituting the same, we get,
$\Rightarrow I=\dfrac{1}{2}\int{\left( \sin 5x-\sin x \right)dx}$
Let us evaluate the above equation further,
$\Rightarrow I=\dfrac{1}{2}\int{\sin 5xdx}-\dfrac{1}{2}\int{\sin xdx}$
From the formulae of integration,
$\Rightarrow \int{\sin 5xdx=\dfrac{\left( -\cos 5x \right)}{5}}$
$\Rightarrow \int{\sin xdx=\left( -\cos x \right)}$
Substituting the values of integrals in the above equation, we get,
$\Rightarrow I=\dfrac{1}{2}\dfrac{\left( -\cos 5x \right)}{5}-\dfrac{1}{2}\left( -\cos x \right)$
Simplifying the above equation, we get
$\Rightarrow I=\dfrac{\left( -\cos 5x \right)}{10}+\dfrac{\cos x}{2}$
$\Rightarrow I=\dfrac{1}{2}\cos x-\dfrac{1}{10}\cos 5x$
Substituting the value of $I$ in the above equation, we get,
$\therefore \int{\sin 2x\cos 3xdx}=\dfrac{1}{2}\cos x-\dfrac{1}{10}\cos 5x$
Note: One must always remember that the difference between the trigonometric functions $\sin 5x-\sin x$ is not equal to $\sin 4x$ and it is solved using the formula $\sin \left( A+B \right)-\sin \left( A-B \right)=2\cos A\sin B$ from trigonometry.
Complete step by step solution:
Let $I$ be the value of the integral for the given function.
$\Rightarrow I=\int{\sin 2x\cos 3x}dx$
We are given a function and need to integrate it. We solve this question using the trigonometric formulae to simplify the function and then find the value of $I$ .
According to the question,
The integral of the function $\sin 2x\cos 3x$ is written as follows,
$\Rightarrow I=\int{\sin 2x\cos 3x}dx$
We need to multiply and divide by 2.
Multiplying and dividing by 2 on the right-hand side of the equation, we get,
$\Rightarrow I=\dfrac{1}{2}\times 2\int{\sin 2x\cos 3x}dx$
$\Rightarrow I=\dfrac{1}{2}\int{2\sin 2x\cos 3x}dx$
The above trigonometric function is of the form $2\sin A\cos B$
From trigonometry,
We know that $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$ .
Here,
The values of $A$ and $B$ are given as follows,
$A=2x;$
$B=3x$
Applying the above formula and substituting the values in the formula, we get,
$\Rightarrow I=\dfrac{1}{2}\int{\left( \sin \left( 2x+3x \right)+\sin \left( 2x-3x \right) \right)dx}$
Simplifying the value of the above equation, we get,
$\Rightarrow I=\dfrac{1}{2}\int{\left( \sin 5x+\sin \left( -x \right) \right)dx}$
From trigonometry,
We know that $\sin x$ is an odd function.
For any odd function,
$\Rightarrow f\left( x \right)=-f\left( x \right)$
Applying the same for the $\sin x$ function, we get,
$\Rightarrow \sin \left( -x \right)=-\sin x$
Substituting the same, we get,
$\Rightarrow I=\dfrac{1}{2}\int{\left( \sin 5x-\sin x \right)dx}$
Let us evaluate the above equation further,
$\Rightarrow I=\dfrac{1}{2}\int{\sin 5xdx}-\dfrac{1}{2}\int{\sin xdx}$
From the formulae of integration,
$\Rightarrow \int{\sin 5xdx=\dfrac{\left( -\cos 5x \right)}{5}}$
$\Rightarrow \int{\sin xdx=\left( -\cos x \right)}$
Substituting the values of integrals in the above equation, we get,
$\Rightarrow I=\dfrac{1}{2}\dfrac{\left( -\cos 5x \right)}{5}-\dfrac{1}{2}\left( -\cos x \right)$
Simplifying the above equation, we get
$\Rightarrow I=\dfrac{\left( -\cos 5x \right)}{10}+\dfrac{\cos x}{2}$
$\Rightarrow I=\dfrac{1}{2}\cos x-\dfrac{1}{10}\cos 5x$
Substituting the value of $I$ in the above equation, we get,
$\therefore \int{\sin 2x\cos 3xdx}=\dfrac{1}{2}\cos x-\dfrac{1}{10}\cos 5x$
Note: One must always remember that the difference between the trigonometric functions $\sin 5x-\sin x$ is not equal to $\sin 4x$ and it is solved using the formula $\sin \left( A+B \right)-\sin \left( A-B \right)=2\cos A\sin B$ from trigonometry.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

State and explain Coulombs law in electrostatics class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE
