Answer
Verified
391.2k+ views
Hint: Here we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$.
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
Now, fof means that g(x) is the function of f, that means we can find g(x) by substituting $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f\left( x \right)$. Now, fofof means that h(x) is a function of fof and we have found the value for fof as g(x). So, we can find the value of h(x) by substituting g(x) in $f\left( x \right) = \dfrac{1}{{3 - x}}$.
Complete step by step solution:
In this question, we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$ and we are given the value for $f\left( x \right)$.
Given data is:
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
And we need to find,
$\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = ?$
So, first of all, g(x) is fof. That means g(x) is a function of f. That means when we substitute the function $f$ in the variable $x$ in function $f$, we get $fof$. Therefore, we get
$
\Rightarrow g\left( x \right) = fof \\
\Rightarrow g\left( x \right) = f\left( {f\left( x \right)} \right) \\
$
Now, we need to put $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f(x)$
$
\Rightarrow g\left( x \right) = \dfrac{1}{{3 - \dfrac{1}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{1}{{\dfrac{{3\left( {3 - x} \right) - 1}}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{9 - 3x - 1}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}} \\
$
Hence, we have found the value for g(x) and now we need to find the value for h(x).
Now, h(x) is $fofof$ that means $h$ is a function of $fof$ and we have found the value of $fof$ as $g (x)$. Therefore, we get
$
\Rightarrow h\left( x \right) = fofof \\
\Rightarrow h\left( x \right) = f\left( {fof} \right) \\
\Rightarrow h\left( x \right) = f\left( {g\left( x \right)} \right) \\
$
Now, we need to put $g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}}$ in $f\left( x \right) = \dfrac{1}{{3 - x}}$. Therefore, we get
$
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - x}} \\
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - \dfrac{{3 - x}}{{8 - 3x}}}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{3\left( {8 - 3x} \right) - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{24 - 9x - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{21 - 8x}} \\
$
Therefore, we now have all the values we need. Therefore, substituting these values, we get
$
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\left( {\dfrac{1}{{3 - x}}} \right)\left( {\dfrac{{3 - x}}{{8 - 3x}}} \right)\left( {\dfrac{{8 - 3x}}{{21 - 8x}}} \right)}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\dfrac{1}{{\left( {21 - 8x} \right)}}}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x \\
$
Hence, we have found the value of $\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x$.
Note:
Properties of composite functions are
Associative Property: If f, g and h are given three functions, then they are said to be associative if
$f \circ \left( {g \circ h} \right) = \left( {f \circ g} \right) \circ h$
Commutative property: If f and g are given two functions, then they are said to be commutative if
$g \circ f = f \circ g$
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
Now, fof means that g(x) is the function of f, that means we can find g(x) by substituting $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f\left( x \right)$. Now, fofof means that h(x) is a function of fof and we have found the value for fof as g(x). So, we can find the value of h(x) by substituting g(x) in $f\left( x \right) = \dfrac{1}{{3 - x}}$.
Complete step by step solution:
In this question, we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$ and we are given the value for $f\left( x \right)$.
Given data is:
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
And we need to find,
$\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = ?$
So, first of all, g(x) is fof. That means g(x) is a function of f. That means when we substitute the function $f$ in the variable $x$ in function $f$, we get $fof$. Therefore, we get
$
\Rightarrow g\left( x \right) = fof \\
\Rightarrow g\left( x \right) = f\left( {f\left( x \right)} \right) \\
$
Now, we need to put $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f(x)$
$
\Rightarrow g\left( x \right) = \dfrac{1}{{3 - \dfrac{1}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{1}{{\dfrac{{3\left( {3 - x} \right) - 1}}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{9 - 3x - 1}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}} \\
$
Hence, we have found the value for g(x) and now we need to find the value for h(x).
Now, h(x) is $fofof$ that means $h$ is a function of $fof$ and we have found the value of $fof$ as $g (x)$. Therefore, we get
$
\Rightarrow h\left( x \right) = fofof \\
\Rightarrow h\left( x \right) = f\left( {fof} \right) \\
\Rightarrow h\left( x \right) = f\left( {g\left( x \right)} \right) \\
$
Now, we need to put $g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}}$ in $f\left( x \right) = \dfrac{1}{{3 - x}}$. Therefore, we get
$
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - x}} \\
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - \dfrac{{3 - x}}{{8 - 3x}}}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{3\left( {8 - 3x} \right) - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{24 - 9x - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{21 - 8x}} \\
$
Therefore, we now have all the values we need. Therefore, substituting these values, we get
$
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\left( {\dfrac{1}{{3 - x}}} \right)\left( {\dfrac{{3 - x}}{{8 - 3x}}} \right)\left( {\dfrac{{8 - 3x}}{{21 - 8x}}} \right)}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\dfrac{1}{{\left( {21 - 8x} \right)}}}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x \\
$
Hence, we have found the value of $\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x$.
Note:
Properties of composite functions are
Associative Property: If f, g and h are given three functions, then they are said to be associative if
$f \circ \left( {g \circ h} \right) = \left( {f \circ g} \right) \circ h$
Commutative property: If f and g are given two functions, then they are said to be commutative if
$g \circ f = f \circ g$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it