
Solve the following.
$f\left( x \right) = \dfrac{1}{{3 - x}}$, $g\left( x \right) = fof$, $h\left( x \right) = fofof$, then $\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = ?$
Answer
498.6k+ views
Hint: Here we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$.
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
Now, fof means that g(x) is the function of f, that means we can find g(x) by substituting $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f\left( x \right)$. Now, fofof means that h(x) is a function of fof and we have found the value for fof as g(x). So, we can find the value of h(x) by substituting g(x) in $f\left( x \right) = \dfrac{1}{{3 - x}}$.
Complete step by step solution:
In this question, we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$ and we are given the value for $f\left( x \right)$.
Given data is:
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
And we need to find,
$\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = ?$
So, first of all, g(x) is fof. That means g(x) is a function of f. That means when we substitute the function $f$ in the variable $x$ in function $f$, we get $fof$. Therefore, we get
$
\Rightarrow g\left( x \right) = fof \\
\Rightarrow g\left( x \right) = f\left( {f\left( x \right)} \right) \\
$
Now, we need to put $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f(x)$
$
\Rightarrow g\left( x \right) = \dfrac{1}{{3 - \dfrac{1}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{1}{{\dfrac{{3\left( {3 - x} \right) - 1}}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{9 - 3x - 1}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}} \\
$
Hence, we have found the value for g(x) and now we need to find the value for h(x).
Now, h(x) is $fofof$ that means $h$ is a function of $fof$ and we have found the value of $fof$ as $g (x)$. Therefore, we get
$
\Rightarrow h\left( x \right) = fofof \\
\Rightarrow h\left( x \right) = f\left( {fof} \right) \\
\Rightarrow h\left( x \right) = f\left( {g\left( x \right)} \right) \\
$
Now, we need to put $g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}}$ in $f\left( x \right) = \dfrac{1}{{3 - x}}$. Therefore, we get
$
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - x}} \\
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - \dfrac{{3 - x}}{{8 - 3x}}}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{3\left( {8 - 3x} \right) - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{24 - 9x - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{21 - 8x}} \\
$
Therefore, we now have all the values we need. Therefore, substituting these values, we get
$
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\left( {\dfrac{1}{{3 - x}}} \right)\left( {\dfrac{{3 - x}}{{8 - 3x}}} \right)\left( {\dfrac{{8 - 3x}}{{21 - 8x}}} \right)}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\dfrac{1}{{\left( {21 - 8x} \right)}}}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x \\
$
Hence, we have found the value of $\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x$.
Note:
Properties of composite functions are
Associative Property: If f, g and h are given three functions, then they are said to be associative if
$f \circ \left( {g \circ h} \right) = \left( {f \circ g} \right) \circ h$
Commutative property: If f and g are given two functions, then they are said to be commutative if
$g \circ f = f \circ g$
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
Now, fof means that g(x) is the function of f, that means we can find g(x) by substituting $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f\left( x \right)$. Now, fofof means that h(x) is a function of fof and we have found the value for fof as g(x). So, we can find the value of h(x) by substituting g(x) in $f\left( x \right) = \dfrac{1}{{3 - x}}$.
Complete step by step solution:
In this question, we are given three functions $f\left( x \right)$, $g\left( x \right)$ and $h\left( x \right)$ and we are given the value for $f\left( x \right)$.
Given data is:
$f\left( x \right) = \dfrac{1}{{3 - x}}$
$g\left( x \right) = fof$
$h\left( x \right) = fofof$
And we need to find,
$\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = ?$
So, first of all, g(x) is fof. That means g(x) is a function of f. That means when we substitute the function $f$ in the variable $x$ in function $f$, we get $fof$. Therefore, we get
$
\Rightarrow g\left( x \right) = fof \\
\Rightarrow g\left( x \right) = f\left( {f\left( x \right)} \right) \\
$
Now, we need to put $f\left( x \right) = \dfrac{1}{{3 - x}}$ in $f(x)$
$
\Rightarrow g\left( x \right) = \dfrac{1}{{3 - \dfrac{1}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{1}{{\dfrac{{3\left( {3 - x} \right) - 1}}{{3 - x}}}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{9 - 3x - 1}} \\
\Rightarrow g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}} \\
$
Hence, we have found the value for g(x) and now we need to find the value for h(x).
Now, h(x) is $fofof$ that means $h$ is a function of $fof$ and we have found the value of $fof$ as $g (x)$. Therefore, we get
$
\Rightarrow h\left( x \right) = fofof \\
\Rightarrow h\left( x \right) = f\left( {fof} \right) \\
\Rightarrow h\left( x \right) = f\left( {g\left( x \right)} \right) \\
$
Now, we need to put $g\left( x \right) = \dfrac{{\left( {3 - x} \right)}}{{8 - 3x}}$ in $f\left( x \right) = \dfrac{1}{{3 - x}}$. Therefore, we get
$
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - x}} \\
\Rightarrow h\left( x \right) = \dfrac{1}{{3 - \dfrac{{3 - x}}{{8 - 3x}}}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{3\left( {8 - 3x} \right) - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{24 - 9x - 3 + x}} \\
\Rightarrow h\left( x \right) = \dfrac{{8 - 3x}}{{21 - 8x}} \\
$
Therefore, we now have all the values we need. Therefore, substituting these values, we get
$
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\left( {\dfrac{1}{{3 - x}}} \right)\left( {\dfrac{{3 - x}}{{8 - 3x}}} \right)\left( {\dfrac{{8 - 3x}}{{21 - 8x}}} \right)}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = \dfrac{1}{{\dfrac{1}{{\left( {21 - 8x} \right)}}}} \\
\Rightarrow \dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x \\
$
Hence, we have found the value of $\dfrac{1}{{f\left( x \right)g\left( x \right)h\left( x \right)}} = 21 - 8x$.
Note:
Properties of composite functions are
Associative Property: If f, g and h are given three functions, then they are said to be associative if
$f \circ \left( {g \circ h} \right) = \left( {f \circ g} \right) \circ h$
Commutative property: If f and g are given two functions, then they are said to be commutative if
$g \circ f = f \circ g$
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

