
Solve the following expression:
\[{{\log }_{10}}\left( {{x}^{2}}-x-6 \right)-x={{\log }_{10}}\left( x+2 \right)-4\] .
Answer
605.7k+ views
Hint: First of all separate all the terms containing log. Then use the formula \[\log m-\log n=\log \dfrac{m}{n}\]. Also use if \[{{\log }_{m}}n=a\], then \[n={{\left( m \right)}^{a}}\] to find the desired value of x. Take special care of the domain of the logarithmic function.
Complete step-by-step answer:
Here, we have to solve the equation, \[{{\log }_{10}}\left( {{x}^{2}}-x-6 \right)-x={{\log }_{10}}\left( x+2 \right)-4\].
Let us consider the equation given in the question,
\[{{\log }_{10}}\left( {{x}^{2}}-x-6 \right)-x={{\log }_{10}}\left( x+2 \right)-4....\left( i \right)\]
By taking the terms containing log to one side and remaining terms to the other side, we get,
\[{{\log }_{10}}\left( {{x}^{2}}-x-6 \right)-{{\log }_{10}}\left( x+2 \right)=x-4\]
We know that \[\log m-\log n=\log \dfrac{m}{n}\]. By using this in the above equation, we get,
\[{{\log }_{10}}\left( \dfrac{{{x}^{2}}-x-6}{\left( x+2 \right)} \right)=\left( x-4 \right)....\left( ii \right)\]
Now, taking the expression, \[E={{x}^{2}}-x-6\]
We can also write it as,
\[E={{x}^{2}}-\left( 3x-2x \right)-6\]
Or, \[E={{x}^{2}}-3x+2x-6\]
We can write the above expression as,
\[E=x\left( x-3 \right)+2\left( x-3 \right)\]
By taking \[\left( x-3 \right)\] common, we get,
\[E=\left( x+2 \right)\left( x-3 \right)\]
So, we get, \[{{x}^{2}}-x-6=\left( x+2 \right)\left( x-3 \right)\]. By substituting the value of \[{{x}^{2}}-x-6\] in equation (ii), we get,
\[{{\log }_{10}}\left[ \dfrac{\left( x+2 \right)\left( x-3 \right)}{\left( x+2 \right)} \right]=\left( x-4 \right)\]
By canceling the like terms, we get,
\[{{\log }_{10}}\left( x-3 \right)=\left( x-4 \right)\]
We know that if \[{{\log }_{m}}n=a\], then \[n={{\left( m \right)}^{a}}\]
By using this, we get,
\[\left( x-3 \right)={{10}^{\left( x-4 \right)}}....\left( iii \right)\]
We know that for \[{{\log }_{n}}m\], m should always be greater than zero.
Therefore, for \[\log \left( x+2 \right)\], we get,
\[\left( x+2 \right)>0\]
Or, \[x>-2....\left( iv \right)\]
Also for, \[\log \left( {{x}^{2}}-x-6 \right)\], we get,
\[\left( {{x}^{2}}-x-6 \right)>0\]
Or, \[\left( x+2 \right)\left( x-3 \right)>0\]
For x > 3, (x + 2) > 0 and (x – 3) > 0
This means that, (x + 2) (x – 3) > 0
For example, let us take x = 4, then,
(4 + 2) (4 – 3) = 6 > 0
Therefore, \[x\in \left( 3,\infty \right)\]
For – 2 < x < 3, (x + 2) > 0 and (x – 3) < 0
This means that, (x + 2) (x – 3) < 0
For example, let us take x = 0 then (0 + 2) (0 – 3) = -6 < 0
Therefore, x does not belong to this category.
For x < - 2, (x + 2) < 0 and (x – 3) < 0
This means that, (x + 2) (x – 3) < 0
For example, let us take x = -3, then
(– 3 + 2) (– 3 – 3) = 6 > 0
Therefore, \[x\in \left( -\infty ,-2 \right)\]
Hence, we get \[x\in \left( -\infty ,-2 \right)\cup \left( 3,\infty \right)....\left( v \right)\]
Now we know that (x + 2) and \[\left( {{x}^{2}}-x-6 \right)\] should both be positive. Hence, we will take the intersection of values of x, we get,
\[x\in \left( -\infty ,-2 \right)\cap \left[ \left( -\infty ,-2 \right)\cup \left( 3,\infty \right) \right]\]
The only region which is common to both is \[\left( 3,\infty \right)\].
So, we get, \[x\in \left( 3,\infty \right)\].
Now, to consider equation (iii), that is,
\[\left( x-3 \right)={{10}^{\left( x-4 \right)}}\]
Now, here we will substitute the value of x > 3
Let us substitute x = 4. So, we get,
\[\left( 4-3 \right)={{10}^{\left( 4-4 \right)}}\]
\[\Rightarrow 1={{10}^{0}}\]
\[\Rightarrow 1=1\]
LHS = RHS
Therefore, x = 4 is the solution of the equation.
Now, in the equation \[\left( x-3 \right)={{10}^{\left( x-4 \right)}}\], if we will substitute the value of x > 4, then RHS of the above equation that is \[{{10}^{\left( x-4 \right)}}\] will rise very fast (exponentially) like \[{{10}^{5}},{{10}^{6}}\] , etc. But the LHS of the above equation will rise very slowly like 2, 3, 4, etc. So, they won’t be equal for any value of x.
So, we get only one solution and that is x = 4.
Note: In this question, many students just solve the given equation and give the wrong answer. Special care should be taken for the domain of a logarithmic function that if we have \[{{\log }_{n}}m\], then ‘m’ should be greater than zero and ‘n’ should also be greater than zero and \[n\ne 1\]. Also, students can cross-check their answer by substituting x = 4 back in the equation given in the question.
Complete step-by-step answer:
Here, we have to solve the equation, \[{{\log }_{10}}\left( {{x}^{2}}-x-6 \right)-x={{\log }_{10}}\left( x+2 \right)-4\].
Let us consider the equation given in the question,
\[{{\log }_{10}}\left( {{x}^{2}}-x-6 \right)-x={{\log }_{10}}\left( x+2 \right)-4....\left( i \right)\]
By taking the terms containing log to one side and remaining terms to the other side, we get,
\[{{\log }_{10}}\left( {{x}^{2}}-x-6 \right)-{{\log }_{10}}\left( x+2 \right)=x-4\]
We know that \[\log m-\log n=\log \dfrac{m}{n}\]. By using this in the above equation, we get,
\[{{\log }_{10}}\left( \dfrac{{{x}^{2}}-x-6}{\left( x+2 \right)} \right)=\left( x-4 \right)....\left( ii \right)\]
Now, taking the expression, \[E={{x}^{2}}-x-6\]
We can also write it as,
\[E={{x}^{2}}-\left( 3x-2x \right)-6\]
Or, \[E={{x}^{2}}-3x+2x-6\]
We can write the above expression as,
\[E=x\left( x-3 \right)+2\left( x-3 \right)\]
By taking \[\left( x-3 \right)\] common, we get,
\[E=\left( x+2 \right)\left( x-3 \right)\]
So, we get, \[{{x}^{2}}-x-6=\left( x+2 \right)\left( x-3 \right)\]. By substituting the value of \[{{x}^{2}}-x-6\] in equation (ii), we get,
\[{{\log }_{10}}\left[ \dfrac{\left( x+2 \right)\left( x-3 \right)}{\left( x+2 \right)} \right]=\left( x-4 \right)\]
By canceling the like terms, we get,
\[{{\log }_{10}}\left( x-3 \right)=\left( x-4 \right)\]
We know that if \[{{\log }_{m}}n=a\], then \[n={{\left( m \right)}^{a}}\]
By using this, we get,
\[\left( x-3 \right)={{10}^{\left( x-4 \right)}}....\left( iii \right)\]
We know that for \[{{\log }_{n}}m\], m should always be greater than zero.
Therefore, for \[\log \left( x+2 \right)\], we get,
\[\left( x+2 \right)>0\]
Or, \[x>-2....\left( iv \right)\]
Also for, \[\log \left( {{x}^{2}}-x-6 \right)\], we get,
\[\left( {{x}^{2}}-x-6 \right)>0\]
Or, \[\left( x+2 \right)\left( x-3 \right)>0\]
For x > 3, (x + 2) > 0 and (x – 3) > 0
This means that, (x + 2) (x – 3) > 0
For example, let us take x = 4, then,
(4 + 2) (4 – 3) = 6 > 0
Therefore, \[x\in \left( 3,\infty \right)\]
For – 2 < x < 3, (x + 2) > 0 and (x – 3) < 0
This means that, (x + 2) (x – 3) < 0
For example, let us take x = 0 then (0 + 2) (0 – 3) = -6 < 0
Therefore, x does not belong to this category.
For x < - 2, (x + 2) < 0 and (x – 3) < 0
This means that, (x + 2) (x – 3) < 0
For example, let us take x = -3, then
(– 3 + 2) (– 3 – 3) = 6 > 0
Therefore, \[x\in \left( -\infty ,-2 \right)\]
Hence, we get \[x\in \left( -\infty ,-2 \right)\cup \left( 3,\infty \right)....\left( v \right)\]
Now we know that (x + 2) and \[\left( {{x}^{2}}-x-6 \right)\] should both be positive. Hence, we will take the intersection of values of x, we get,
\[x\in \left( -\infty ,-2 \right)\cap \left[ \left( -\infty ,-2 \right)\cup \left( 3,\infty \right) \right]\]
The only region which is common to both is \[\left( 3,\infty \right)\].
So, we get, \[x\in \left( 3,\infty \right)\].
Now, to consider equation (iii), that is,
\[\left( x-3 \right)={{10}^{\left( x-4 \right)}}\]
Now, here we will substitute the value of x > 3
Let us substitute x = 4. So, we get,
\[\left( 4-3 \right)={{10}^{\left( 4-4 \right)}}\]
\[\Rightarrow 1={{10}^{0}}\]
\[\Rightarrow 1=1\]
LHS = RHS
Therefore, x = 4 is the solution of the equation.
Now, in the equation \[\left( x-3 \right)={{10}^{\left( x-4 \right)}}\], if we will substitute the value of x > 4, then RHS of the above equation that is \[{{10}^{\left( x-4 \right)}}\] will rise very fast (exponentially) like \[{{10}^{5}},{{10}^{6}}\] , etc. But the LHS of the above equation will rise very slowly like 2, 3, 4, etc. So, they won’t be equal for any value of x.
So, we get only one solution and that is x = 4.
Note: In this question, many students just solve the given equation and give the wrong answer. Special care should be taken for the domain of a logarithmic function that if we have \[{{\log }_{n}}m\], then ‘m’ should be greater than zero and ‘n’ should also be greater than zero and \[n\ne 1\]. Also, students can cross-check their answer by substituting x = 4 back in the equation given in the question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

