
Solve the following equations using Matrix Inversion method.
\[2x-3y+6=0\] and \[6x+y+8=0\]
Answer
537.6k+ views
Hint:To find the value of \[x\] and \[y\] we will first form a matrix from the two equation and then find the determinant of the matrix A and then we will find the inverse of matrix A and form product with a \[2\times 1\] matrix of constant value of the equation given as:
\[X={{A}^{-1}}B\]
Complete step by step solution:
The two equation given are \[2x-3y+6=0\] and \[6x+y+8=0\], and to form the matrix A we will form the matrix A as \[\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\] which is equal to \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] and to form the matrix B we will make a \[2\times 1\] matrix of constant value of
\[\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] as \[\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\].
With the matrix of X as \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|\] we will form a matrix equation of:
\[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\]
Now forming the inverse of the matrix A, we will get the inverse of matrix A as:
\[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\]
The value of \[\left| A \right|\] is the determinant which is given as:
\[\Rightarrow \left| A \right|=\left( 2\times 1-\left( -3\times 6 \right) \right)\]
\[\Rightarrow \left| A \right|=20\]
Now with the determinant value found we will find the value of inverse matrix of A as:
\[{{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] (The inverse of \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] is \[\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] by interchanging the original matrix as \[\left| \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right|\])
\[\Rightarrow {{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\]
Placing the inverse value in \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] , we get:
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1\times -6+3\times -8 \\
-6\times -6+2\times 8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{1\times -6+3\times -8}{20} \\
\dfrac{-6\times -6+2\times 8}{20} \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{-30}{20} \\
\dfrac{52}{20} \\
\end{matrix} \right|\]
Therefore, the value of \[x=\dfrac{-3}{2}\]and \[y=\dfrac{13}{5}\]
Note: The matrix inversion method can only work on a square matrix. We will also solve these equations by elimination method and substitution method.
\[X={{A}^{-1}}B\]
Complete step by step solution:
The two equation given are \[2x-3y+6=0\] and \[6x+y+8=0\], and to form the matrix A we will form the matrix A as \[\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\] which is equal to \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] and to form the matrix B we will make a \[2\times 1\] matrix of constant value of
\[\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] as \[\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\].
With the matrix of X as \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|\] we will form a matrix equation of:
\[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\]
Now forming the inverse of the matrix A, we will get the inverse of matrix A as:
\[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\]
The value of \[\left| A \right|\] is the determinant which is given as:
\[\Rightarrow \left| A \right|=\left( 2\times 1-\left( -3\times 6 \right) \right)\]
\[\Rightarrow \left| A \right|=20\]
Now with the determinant value found we will find the value of inverse matrix of A as:
\[{{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] (The inverse of \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] is \[\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] by interchanging the original matrix as \[\left| \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right|\])
\[\Rightarrow {{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\]
Placing the inverse value in \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] , we get:
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1\times -6+3\times -8 \\
-6\times -6+2\times 8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{1\times -6+3\times -8}{20} \\
\dfrac{-6\times -6+2\times 8}{20} \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{-30}{20} \\
\dfrac{52}{20} \\
\end{matrix} \right|\]
Therefore, the value of \[x=\dfrac{-3}{2}\]and \[y=\dfrac{13}{5}\]
Note: The matrix inversion method can only work on a square matrix. We will also solve these equations by elimination method and substitution method.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

