Solve the following equations using Matrix Inversion method.
\[2x-3y+6=0\] and \[6x+y+8=0\]
Answer
Verified
439.2k+ views
Hint:To find the value of \[x\] and \[y\] we will first form a matrix from the two equation and then find the determinant of the matrix A and then we will find the inverse of matrix A and form product with a \[2\times 1\] matrix of constant value of the equation given as:
\[X={{A}^{-1}}B\]
Complete step by step solution:
The two equation given are \[2x-3y+6=0\] and \[6x+y+8=0\], and to form the matrix A we will form the matrix A as \[\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\] which is equal to \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] and to form the matrix B we will make a \[2\times 1\] matrix of constant value of
\[\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] as \[\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\].
With the matrix of X as \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|\] we will form a matrix equation of:
\[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\]
Now forming the inverse of the matrix A, we will get the inverse of matrix A as:
\[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\]
The value of \[\left| A \right|\] is the determinant which is given as:
\[\Rightarrow \left| A \right|=\left( 2\times 1-\left( -3\times 6 \right) \right)\]
\[\Rightarrow \left| A \right|=20\]
Now with the determinant value found we will find the value of inverse matrix of A as:
\[{{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] (The inverse of \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] is \[\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] by interchanging the original matrix as \[\left| \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right|\])
\[\Rightarrow {{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\]
Placing the inverse value in \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] , we get:
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1\times -6+3\times -8 \\
-6\times -6+2\times 8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{1\times -6+3\times -8}{20} \\
\dfrac{-6\times -6+2\times 8}{20} \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{-30}{20} \\
\dfrac{52}{20} \\
\end{matrix} \right|\]
Therefore, the value of \[x=\dfrac{-3}{2}\]and \[y=\dfrac{13}{5}\]
Note: The matrix inversion method can only work on a square matrix. We will also solve these equations by elimination method and substitution method.
\[X={{A}^{-1}}B\]
Complete step by step solution:
The two equation given are \[2x-3y+6=0\] and \[6x+y+8=0\], and to form the matrix A we will form the matrix A as \[\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\] which is equal to \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] and to form the matrix B we will make a \[2\times 1\] matrix of constant value of
\[\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] as \[\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\].
With the matrix of X as \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|\] we will form a matrix equation of:
\[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\]
Now forming the inverse of the matrix A, we will get the inverse of matrix A as:
\[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|\]
The value of \[\left| A \right|\] is the determinant which is given as:
\[\Rightarrow \left| A \right|=\left( 2\times 1-\left( -3\times 6 \right) \right)\]
\[\Rightarrow \left| A \right|=20\]
Now with the determinant value found we will find the value of inverse matrix of A as:
\[{{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] (The inverse of \[\left| \begin{matrix}
2 & -3 \\
6 & 1 \\
\end{matrix} \right|\] is \[\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\] by interchanging the original matrix as \[\left| \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right|\])
\[\Rightarrow {{A}^{-1}}=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\]
Placing the inverse value in \[\left| \begin{matrix}
x \\
y \\
\end{matrix} \right|={{A}^{-1}}\left| \begin{matrix}
m \\
n \\
\end{matrix} \right|\] , we get:
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1 & 3 \\
-6 & 2 \\
\end{matrix} \right|\left| \begin{matrix}
-6 \\
-8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\dfrac{1}{20}\left| \begin{matrix}
1\times -6+3\times -8 \\
-6\times -6+2\times 8 \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{1\times -6+3\times -8}{20} \\
\dfrac{-6\times -6+2\times 8}{20} \\
\end{matrix} \right|\]
\[\Rightarrow \left| \begin{matrix}
x \\
y \\
\end{matrix} \right|=\left| \begin{matrix}
\dfrac{-30}{20} \\
\dfrac{52}{20} \\
\end{matrix} \right|\]
Therefore, the value of \[x=\dfrac{-3}{2}\]and \[y=\dfrac{13}{5}\]
Note: The matrix inversion method can only work on a square matrix. We will also solve these equations by elimination method and substitution method.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE