
Solve the following equations:
$\left( {x + 9} \right)\left( {x - 3} \right)\left( {x - 7} \right)\left( {x + 5} \right) = 385$
Answer
621.6k+ views
Hint: In this question first multiply two factors together and the remaining two together so that it converts into a quadratic equation then substitute the same part to any other variable and multiply later on to apply the quadratic formula, so use these concepts to get the solution of the question.
Given equation is
$\left( {x + 9} \right)\left( {x - 3} \right)\left( {x - 7} \right)\left( {x + 5} \right) = 385$
Now multiply (x+9) and (x-7) together and remaining two together
\[
\left[ {\left( {x + 9} \right)\left( {x - 7} \right)} \right]\left[ {\left( {x - 3} \right)\left( {x + 5} \right)} \right] = 385 \\
\left[ {{x^2} + 9x - 7x - 63} \right]\left[ {{x^2} - 3x + 5x - 15} \right] = 385 \\
\left[ {{x^2} + 2x - 63} \right]\left[ {{x^2} + 2x - 15} \right] = 385 \\
\]
Let, $\left( {{x^2} + 2x} \right) = t...........\left( 1 \right)$
So, substitute this value in the above equation we have
\[
\left[ {t - 63} \right]\left[ {t - 15} \right] = 385 \\
\Rightarrow {t^2} - 15t - 63t + 945 = 385 \\
\Rightarrow {t^2} - 78t + 560 = 0 \\
\]
Now factorize the above equation we have,
\[
\Rightarrow {t^2} - 8t - 70t + 560 = 0 \\
\Rightarrow t\left( {t - 8} \right) - 70\left( {t - 8} \right) = 0 \\
\Rightarrow \left( {t - 8} \right)\left( {t - 70} \right) = 0 \\
\Rightarrow \left( {t - 8} \right) = 0{\text{ & }}\left( {t - 70} \right) = 0 \\
\Rightarrow t = 8{\text{ & }}t = 70 \\
\]
Now from equation (1)
\[
\left( {{x^2} + 2x} \right) = t \\
\Rightarrow \left( {{x^2} + 2x} \right) = 8{\text{ & }}\left( {{x^2} + 2x} \right) = 70 \\
\Rightarrow {x^2} + 2x - 8 = 0..........\left( 2 \right){\text{ & }}{x^2} + 2x - 70 = 0........\left( 3 \right) \\
\]
Now first solve equation (2) by factorization method we have,
\[
\Rightarrow {x^2} + 2x - 8 = 0 \\
\Rightarrow {x^2} + 4x - 2x - 8 = 0 \\
\Rightarrow \left( {x + 4} \right)\left( {x - 2} \right) = 0 \\
\Rightarrow \left( {x + 4} \right) = 0{\text{ & }}\left( {x - 2} \right) = 0 \\
\Rightarrow x = - 4{\text{ & }}x = 2 \\
\]
Now solve equation (3)
\[{x^2} + 2x - 70 = 0\]
This is a quadratic equation so apply quadratic formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 1 \right)\left( { - 70} \right)} }}{2} = \dfrac{{ - 2 \pm \sqrt {284} }}{2} = \dfrac{{ - 2 \pm 2\sqrt {71} }}{2} = - 1 \pm \sqrt {71} $
So, the required solution of the equation is
$x = \left( {2, - 4,\left( { - 1 \pm \sqrt {71} } \right)} \right)$
So, this is the required answer.
Note: In such types of questions start with normal multiplication and then replace some portion of the equation with another variable and convert it into a quadratic equation, now factorize the equation if possible if not apply quadratic formula, so after simplification we will get the required answer.
Given equation is
$\left( {x + 9} \right)\left( {x - 3} \right)\left( {x - 7} \right)\left( {x + 5} \right) = 385$
Now multiply (x+9) and (x-7) together and remaining two together
\[
\left[ {\left( {x + 9} \right)\left( {x - 7} \right)} \right]\left[ {\left( {x - 3} \right)\left( {x + 5} \right)} \right] = 385 \\
\left[ {{x^2} + 9x - 7x - 63} \right]\left[ {{x^2} - 3x + 5x - 15} \right] = 385 \\
\left[ {{x^2} + 2x - 63} \right]\left[ {{x^2} + 2x - 15} \right] = 385 \\
\]
Let, $\left( {{x^2} + 2x} \right) = t...........\left( 1 \right)$
So, substitute this value in the above equation we have
\[
\left[ {t - 63} \right]\left[ {t - 15} \right] = 385 \\
\Rightarrow {t^2} - 15t - 63t + 945 = 385 \\
\Rightarrow {t^2} - 78t + 560 = 0 \\
\]
Now factorize the above equation we have,
\[
\Rightarrow {t^2} - 8t - 70t + 560 = 0 \\
\Rightarrow t\left( {t - 8} \right) - 70\left( {t - 8} \right) = 0 \\
\Rightarrow \left( {t - 8} \right)\left( {t - 70} \right) = 0 \\
\Rightarrow \left( {t - 8} \right) = 0{\text{ & }}\left( {t - 70} \right) = 0 \\
\Rightarrow t = 8{\text{ & }}t = 70 \\
\]
Now from equation (1)
\[
\left( {{x^2} + 2x} \right) = t \\
\Rightarrow \left( {{x^2} + 2x} \right) = 8{\text{ & }}\left( {{x^2} + 2x} \right) = 70 \\
\Rightarrow {x^2} + 2x - 8 = 0..........\left( 2 \right){\text{ & }}{x^2} + 2x - 70 = 0........\left( 3 \right) \\
\]
Now first solve equation (2) by factorization method we have,
\[
\Rightarrow {x^2} + 2x - 8 = 0 \\
\Rightarrow {x^2} + 4x - 2x - 8 = 0 \\
\Rightarrow \left( {x + 4} \right)\left( {x - 2} \right) = 0 \\
\Rightarrow \left( {x + 4} \right) = 0{\text{ & }}\left( {x - 2} \right) = 0 \\
\Rightarrow x = - 4{\text{ & }}x = 2 \\
\]
Now solve equation (3)
\[{x^2} + 2x - 70 = 0\]
This is a quadratic equation so apply quadratic formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 1 \right)\left( { - 70} \right)} }}{2} = \dfrac{{ - 2 \pm \sqrt {284} }}{2} = \dfrac{{ - 2 \pm 2\sqrt {71} }}{2} = - 1 \pm \sqrt {71} $
So, the required solution of the equation is
$x = \left( {2, - 4,\left( { - 1 \pm \sqrt {71} } \right)} \right)$
So, this is the required answer.
Note: In such types of questions start with normal multiplication and then replace some portion of the equation with another variable and convert it into a quadratic equation, now factorize the equation if possible if not apply quadratic formula, so after simplification we will get the required answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

