Answer
Verified
494.7k+ views
Hint: In this question first multiply two factors together and the remaining two together so that it converts into a quadratic equation then substitute the same part to any other variable and multiply later on to apply the quadratic formula, so use these concepts to get the solution of the question.
Given equation is
$\left( {x + 9} \right)\left( {x - 3} \right)\left( {x - 7} \right)\left( {x + 5} \right) = 385$
Now multiply (x+9) and (x-7) together and remaining two together
\[
\left[ {\left( {x + 9} \right)\left( {x - 7} \right)} \right]\left[ {\left( {x - 3} \right)\left( {x + 5} \right)} \right] = 385 \\
\left[ {{x^2} + 9x - 7x - 63} \right]\left[ {{x^2} - 3x + 5x - 15} \right] = 385 \\
\left[ {{x^2} + 2x - 63} \right]\left[ {{x^2} + 2x - 15} \right] = 385 \\
\]
Let, $\left( {{x^2} + 2x} \right) = t...........\left( 1 \right)$
So, substitute this value in the above equation we have
\[
\left[ {t - 63} \right]\left[ {t - 15} \right] = 385 \\
\Rightarrow {t^2} - 15t - 63t + 945 = 385 \\
\Rightarrow {t^2} - 78t + 560 = 0 \\
\]
Now factorize the above equation we have,
\[
\Rightarrow {t^2} - 8t - 70t + 560 = 0 \\
\Rightarrow t\left( {t - 8} \right) - 70\left( {t - 8} \right) = 0 \\
\Rightarrow \left( {t - 8} \right)\left( {t - 70} \right) = 0 \\
\Rightarrow \left( {t - 8} \right) = 0{\text{ & }}\left( {t - 70} \right) = 0 \\
\Rightarrow t = 8{\text{ & }}t = 70 \\
\]
Now from equation (1)
\[
\left( {{x^2} + 2x} \right) = t \\
\Rightarrow \left( {{x^2} + 2x} \right) = 8{\text{ & }}\left( {{x^2} + 2x} \right) = 70 \\
\Rightarrow {x^2} + 2x - 8 = 0..........\left( 2 \right){\text{ & }}{x^2} + 2x - 70 = 0........\left( 3 \right) \\
\]
Now first solve equation (2) by factorization method we have,
\[
\Rightarrow {x^2} + 2x - 8 = 0 \\
\Rightarrow {x^2} + 4x - 2x - 8 = 0 \\
\Rightarrow \left( {x + 4} \right)\left( {x - 2} \right) = 0 \\
\Rightarrow \left( {x + 4} \right) = 0{\text{ & }}\left( {x - 2} \right) = 0 \\
\Rightarrow x = - 4{\text{ & }}x = 2 \\
\]
Now solve equation (3)
\[{x^2} + 2x - 70 = 0\]
This is a quadratic equation so apply quadratic formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 1 \right)\left( { - 70} \right)} }}{2} = \dfrac{{ - 2 \pm \sqrt {284} }}{2} = \dfrac{{ - 2 \pm 2\sqrt {71} }}{2} = - 1 \pm \sqrt {71} $
So, the required solution of the equation is
$x = \left( {2, - 4,\left( { - 1 \pm \sqrt {71} } \right)} \right)$
So, this is the required answer.
Note: In such types of questions start with normal multiplication and then replace some portion of the equation with another variable and convert it into a quadratic equation, now factorize the equation if possible if not apply quadratic formula, so after simplification we will get the required answer.
Given equation is
$\left( {x + 9} \right)\left( {x - 3} \right)\left( {x - 7} \right)\left( {x + 5} \right) = 385$
Now multiply (x+9) and (x-7) together and remaining two together
\[
\left[ {\left( {x + 9} \right)\left( {x - 7} \right)} \right]\left[ {\left( {x - 3} \right)\left( {x + 5} \right)} \right] = 385 \\
\left[ {{x^2} + 9x - 7x - 63} \right]\left[ {{x^2} - 3x + 5x - 15} \right] = 385 \\
\left[ {{x^2} + 2x - 63} \right]\left[ {{x^2} + 2x - 15} \right] = 385 \\
\]
Let, $\left( {{x^2} + 2x} \right) = t...........\left( 1 \right)$
So, substitute this value in the above equation we have
\[
\left[ {t - 63} \right]\left[ {t - 15} \right] = 385 \\
\Rightarrow {t^2} - 15t - 63t + 945 = 385 \\
\Rightarrow {t^2} - 78t + 560 = 0 \\
\]
Now factorize the above equation we have,
\[
\Rightarrow {t^2} - 8t - 70t + 560 = 0 \\
\Rightarrow t\left( {t - 8} \right) - 70\left( {t - 8} \right) = 0 \\
\Rightarrow \left( {t - 8} \right)\left( {t - 70} \right) = 0 \\
\Rightarrow \left( {t - 8} \right) = 0{\text{ & }}\left( {t - 70} \right) = 0 \\
\Rightarrow t = 8{\text{ & }}t = 70 \\
\]
Now from equation (1)
\[
\left( {{x^2} + 2x} \right) = t \\
\Rightarrow \left( {{x^2} + 2x} \right) = 8{\text{ & }}\left( {{x^2} + 2x} \right) = 70 \\
\Rightarrow {x^2} + 2x - 8 = 0..........\left( 2 \right){\text{ & }}{x^2} + 2x - 70 = 0........\left( 3 \right) \\
\]
Now first solve equation (2) by factorization method we have,
\[
\Rightarrow {x^2} + 2x - 8 = 0 \\
\Rightarrow {x^2} + 4x - 2x - 8 = 0 \\
\Rightarrow \left( {x + 4} \right)\left( {x - 2} \right) = 0 \\
\Rightarrow \left( {x + 4} \right) = 0{\text{ & }}\left( {x - 2} \right) = 0 \\
\Rightarrow x = - 4{\text{ & }}x = 2 \\
\]
Now solve equation (3)
\[{x^2} + 2x - 70 = 0\]
This is a quadratic equation so apply quadratic formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 1 \right)\left( { - 70} \right)} }}{2} = \dfrac{{ - 2 \pm \sqrt {284} }}{2} = \dfrac{{ - 2 \pm 2\sqrt {71} }}{2} = - 1 \pm \sqrt {71} $
So, the required solution of the equation is
$x = \left( {2, - 4,\left( { - 1 \pm \sqrt {71} } \right)} \right)$
So, this is the required answer.
Note: In such types of questions start with normal multiplication and then replace some portion of the equation with another variable and convert it into a quadratic equation, now factorize the equation if possible if not apply quadratic formula, so after simplification we will get the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE