Solve the following equations:
$\left( {x + 9} \right)\left( {x - 3} \right)\left( {x - 7} \right)\left( {x + 5} \right) = 385$
Last updated date: 27th Mar 2023
•
Total views: 308.1k
•
Views today: 7.85k
Answer
308.1k+ views
Hint: In this question first multiply two factors together and the remaining two together so that it converts into a quadratic equation then substitute the same part to any other variable and multiply later on to apply the quadratic formula, so use these concepts to get the solution of the question.
Given equation is
$\left( {x + 9} \right)\left( {x - 3} \right)\left( {x - 7} \right)\left( {x + 5} \right) = 385$
Now multiply (x+9) and (x-7) together and remaining two together
\[
\left[ {\left( {x + 9} \right)\left( {x - 7} \right)} \right]\left[ {\left( {x - 3} \right)\left( {x + 5} \right)} \right] = 385 \\
\left[ {{x^2} + 9x - 7x - 63} \right]\left[ {{x^2} - 3x + 5x - 15} \right] = 385 \\
\left[ {{x^2} + 2x - 63} \right]\left[ {{x^2} + 2x - 15} \right] = 385 \\
\]
Let, $\left( {{x^2} + 2x} \right) = t...........\left( 1 \right)$
So, substitute this value in the above equation we have
\[
\left[ {t - 63} \right]\left[ {t - 15} \right] = 385 \\
\Rightarrow {t^2} - 15t - 63t + 945 = 385 \\
\Rightarrow {t^2} - 78t + 560 = 0 \\
\]
Now factorize the above equation we have,
\[
\Rightarrow {t^2} - 8t - 70t + 560 = 0 \\
\Rightarrow t\left( {t - 8} \right) - 70\left( {t - 8} \right) = 0 \\
\Rightarrow \left( {t - 8} \right)\left( {t - 70} \right) = 0 \\
\Rightarrow \left( {t - 8} \right) = 0{\text{ & }}\left( {t - 70} \right) = 0 \\
\Rightarrow t = 8{\text{ & }}t = 70 \\
\]
Now from equation (1)
\[
\left( {{x^2} + 2x} \right) = t \\
\Rightarrow \left( {{x^2} + 2x} \right) = 8{\text{ & }}\left( {{x^2} + 2x} \right) = 70 \\
\Rightarrow {x^2} + 2x - 8 = 0..........\left( 2 \right){\text{ & }}{x^2} + 2x - 70 = 0........\left( 3 \right) \\
\]
Now first solve equation (2) by factorization method we have,
\[
\Rightarrow {x^2} + 2x - 8 = 0 \\
\Rightarrow {x^2} + 4x - 2x - 8 = 0 \\
\Rightarrow \left( {x + 4} \right)\left( {x - 2} \right) = 0 \\
\Rightarrow \left( {x + 4} \right) = 0{\text{ & }}\left( {x - 2} \right) = 0 \\
\Rightarrow x = - 4{\text{ & }}x = 2 \\
\]
Now solve equation (3)
\[{x^2} + 2x - 70 = 0\]
This is a quadratic equation so apply quadratic formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 1 \right)\left( { - 70} \right)} }}{2} = \dfrac{{ - 2 \pm \sqrt {284} }}{2} = \dfrac{{ - 2 \pm 2\sqrt {71} }}{2} = - 1 \pm \sqrt {71} $
So, the required solution of the equation is
$x = \left( {2, - 4,\left( { - 1 \pm \sqrt {71} } \right)} \right)$
So, this is the required answer.
Note: In such types of questions start with normal multiplication and then replace some portion of the equation with another variable and convert it into a quadratic equation, now factorize the equation if possible if not apply quadratic formula, so after simplification we will get the required answer.
Given equation is
$\left( {x + 9} \right)\left( {x - 3} \right)\left( {x - 7} \right)\left( {x + 5} \right) = 385$
Now multiply (x+9) and (x-7) together and remaining two together
\[
\left[ {\left( {x + 9} \right)\left( {x - 7} \right)} \right]\left[ {\left( {x - 3} \right)\left( {x + 5} \right)} \right] = 385 \\
\left[ {{x^2} + 9x - 7x - 63} \right]\left[ {{x^2} - 3x + 5x - 15} \right] = 385 \\
\left[ {{x^2} + 2x - 63} \right]\left[ {{x^2} + 2x - 15} \right] = 385 \\
\]
Let, $\left( {{x^2} + 2x} \right) = t...........\left( 1 \right)$
So, substitute this value in the above equation we have
\[
\left[ {t - 63} \right]\left[ {t - 15} \right] = 385 \\
\Rightarrow {t^2} - 15t - 63t + 945 = 385 \\
\Rightarrow {t^2} - 78t + 560 = 0 \\
\]
Now factorize the above equation we have,
\[
\Rightarrow {t^2} - 8t - 70t + 560 = 0 \\
\Rightarrow t\left( {t - 8} \right) - 70\left( {t - 8} \right) = 0 \\
\Rightarrow \left( {t - 8} \right)\left( {t - 70} \right) = 0 \\
\Rightarrow \left( {t - 8} \right) = 0{\text{ & }}\left( {t - 70} \right) = 0 \\
\Rightarrow t = 8{\text{ & }}t = 70 \\
\]
Now from equation (1)
\[
\left( {{x^2} + 2x} \right) = t \\
\Rightarrow \left( {{x^2} + 2x} \right) = 8{\text{ & }}\left( {{x^2} + 2x} \right) = 70 \\
\Rightarrow {x^2} + 2x - 8 = 0..........\left( 2 \right){\text{ & }}{x^2} + 2x - 70 = 0........\left( 3 \right) \\
\]
Now first solve equation (2) by factorization method we have,
\[
\Rightarrow {x^2} + 2x - 8 = 0 \\
\Rightarrow {x^2} + 4x - 2x - 8 = 0 \\
\Rightarrow \left( {x + 4} \right)\left( {x - 2} \right) = 0 \\
\Rightarrow \left( {x + 4} \right) = 0{\text{ & }}\left( {x - 2} \right) = 0 \\
\Rightarrow x = - 4{\text{ & }}x = 2 \\
\]
Now solve equation (3)
\[{x^2} + 2x - 70 = 0\]
This is a quadratic equation so apply quadratic formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$ \Rightarrow x = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 1 \right)\left( { - 70} \right)} }}{2} = \dfrac{{ - 2 \pm \sqrt {284} }}{2} = \dfrac{{ - 2 \pm 2\sqrt {71} }}{2} = - 1 \pm \sqrt {71} $
So, the required solution of the equation is
$x = \left( {2, - 4,\left( { - 1 \pm \sqrt {71} } \right)} \right)$
So, this is the required answer.
Note: In such types of questions start with normal multiplication and then replace some portion of the equation with another variable and convert it into a quadratic equation, now factorize the equation if possible if not apply quadratic formula, so after simplification we will get the required answer.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
