Solve the following equations:
$\left( 2x-7 \right)\left( {{x}^{2}}-9 \right)\left( 2x+5 \right)=91.$
Last updated date: 20th Mar 2023
•
Total views: 304.8k
•
Views today: 4.84k
Answer
304.8k+ views
Hint: Factorize, ${{x}^{2}}-9=\left( x-3 \right)\left( x+3 \right).$ Take average of all four brackets and replace it with another variable. Form biquadratic simpler than given.
Complete step-by-step answer:
The given equation is;
$\left( 2x-7 \right)\left( {{x}^{2}}-9 \right)\left( 2x+5 \right)=91..........\left( 1 \right)$
As, we know ${{a}^{2}}-{{b}^{2}}=\left( a-6 \right)\left( a+b \right)$; we can use this identity with ${{x}^{2}}-9={{x}^{2}}-{{3}^{2}}$ and replace it with $\left( x-3 \right)\left( x+3 \right)$. Hence, equation (1) will become;
$\left( 2x-7 \right)\left( x-3 \right)\left( x+3 \right)\left( 2x+5 \right)=91$
Taking out ‘2’ as a common from first bracket and last bracket of above equation, we get
\[\begin{align}
& 2\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)2\left( x+\dfrac{5}{2} \right)=91 \\
& or \\
& 4\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)\left( x+\dfrac{5}{2} \right)=91......\left( 2 \right) \\
\end{align}\]
Now, let us take another variable ‘y’ which can be obtained by getting average of all brackets as follows;
$\begin{align}
& y=\dfrac{x-\dfrac{7}{2}+x-3+x+3+x+\dfrac{5}{2}}{4} \\
& y=\dfrac{4x-1}{4} \\
& y=x-\dfrac{1}{4} \\
& or \\
& x=y+\dfrac{1}{4}........................\left( 3 \right) \\
\end{align}$
Now, we can replace variable ‘x’ by ‘y’ in equation (2) with the help of relation obtained in equation (3);
Hence, equation (3) in variable ‘y’ can be expressed as;
$\begin{align}
& 4\left( y+\dfrac{1}{4}-\dfrac{7}{2} \right)\left( y+\dfrac{1}{4}-3 \right)\left( y+\dfrac{1}{4}+3 \right)\left( y+\dfrac{1}{4}+\dfrac{5}{2} \right)=91 \\
& 4\left( y+\dfrac{1-14}{4} \right)\left( y+\dfrac{1-12}{4} \right)\left( y+\dfrac{1+12}{4} \right)\left( y+\dfrac{1+10}{4} \right)=91 \\
& 4\left( y-\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y+\dfrac{11}{4} \right)=91 \\
& Or \\
& 4\left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)=91...........\left( 4 \right) \\
\end{align}$
As, we know $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.$ therefore, we can replace
$\begin{align}
& \left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}}, \\
& and \\
& \left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{11}{4} \right)}^{2}} \\
\end{align}$
Hence, rewriting equation (4) , we get
\[\begin{align}
& 4\left( {{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}} \right)\left( {{y}^{2}}-\dfrac{{{\left( 11 \right)}^{2}}}{{{\left( 4 \right)}^{2}}} \right)=91 \\
& 4\left( {{y}^{2}}-\dfrac{169}{16} \right)\left( {{y}^{2}}-\dfrac{121}{16} \right)=91 \\
\end{align}\]
Taking ${{y}^{2}}=z$ to minimize the complexity of problem in above equation, we get
$\begin{align}
& 4\left( z-\dfrac{169}{16} \right)\left( z-\dfrac{121}{16} \right)=91 \\
& 4\dfrac{\left( 16z-169 \right)\left( 16z-121 \right)}{16\times 16}=91 \\
\end{align}$
On simplifying the above equation and cross multiplying as well, we get;
$\left( 16z-169 \right)\left( 16z-121 \right)=64\times 91$
Multiplying both the brackets, we get
\[\begin{align}
& 256{{z}^{2}}-121\times 16z-169\times 16z+169\times 121=64\times 91 \\
& 256{{z}^{2}}-290z\times 16+169\times 121=64\times 91 \\
& 256{{z}^{2}}-4640z+14625=0.............\left( 5 \right) \\
\end{align}\]
Now, we have a quadratic equation, so it will have two roots and can be given by quadratic formula as given below;
If, we have any quadratic equation,$A{{x}^{2}}Bx+C=0$, then roots of quadratic equation are;
$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}$
Now, using the quadratic formula with equation (5), we get;
$\begin{align}
& z=\dfrac{4640\pm \sqrt{{{\left( 4640 \right)}^{2}}-4\times 256\times 14625}}{2\times 256} \\
& z=\dfrac{4640\pm \sqrt{6553600}}{2\times 256} \\
\end{align}$
Now, as we know that $\sqrt{6553600}=2560$ ,
Hence, roots can be simplified as;
$\begin{align}
& z=\dfrac{4640\pm 2560}{512} \\
& z=\dfrac{4640}{512}\pm \dfrac{2560}{512} \\
\end{align}$
Simplifying z, we get;
$z=\dfrac{145}{16}\pm 5$
Now, we have two roots as
$\begin{align}
& z=\dfrac{145+80}{16} \\
& and \\
& z=\dfrac{145-80}{16} \\
& z=\dfrac{225}{16},\dfrac{65}{16}......................\left( 6 \right) \\
\end{align}$
Now, we have ${{y}^{2}}=z$
Hence,
\[\begin{align}
& y=\pm \sqrt{\dfrac{225}{16}},y=\pm \sqrt{\dfrac{65}{16}} \\
& Or \\
& y=\dfrac{\pm 15}{4},y=\dfrac{\pm \sqrt{65}}{4} \\
\end{align}\]
Now, for calculating x, we have to use equation (3) i.e. \[x=y+\dfrac{1}{4}\];
Hence, we get
$\begin{align}
& x=\dfrac{\pm 15}{4}+\dfrac{1}{4} \\
& and \\
& x=\pm \dfrac{\sqrt{65}}{4}+\dfrac{1}{4} \\
\end{align}$
Now four values of x, can be given as
$\begin{align}
& x=\dfrac{15+1}{4},\dfrac{-15+1}{4},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\
& Or \\
& x=4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\
\end{align}$
Therefore, values of ‘x’ after solving the given equation are;
$\left( 4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \right)$
Note: One can multiply the brackets to get bi-quadratic equation but it is really complex to get all four solutions from that equation. We have to put a lot of value into getting roots. And one cannot predict $\dfrac{-7}{2}$ as a root. Hence, this approach is more complex than the given solution.
Calculation is an important task of this question as we have to multiply bigger numbers and calculating square root of 6553600, one can go wrong with calculations as well.
Taking an average of four brackets is the key point of the question.
Complete step-by-step answer:
The given equation is;
$\left( 2x-7 \right)\left( {{x}^{2}}-9 \right)\left( 2x+5 \right)=91..........\left( 1 \right)$
As, we know ${{a}^{2}}-{{b}^{2}}=\left( a-6 \right)\left( a+b \right)$; we can use this identity with ${{x}^{2}}-9={{x}^{2}}-{{3}^{2}}$ and replace it with $\left( x-3 \right)\left( x+3 \right)$. Hence, equation (1) will become;
$\left( 2x-7 \right)\left( x-3 \right)\left( x+3 \right)\left( 2x+5 \right)=91$
Taking out ‘2’ as a common from first bracket and last bracket of above equation, we get
\[\begin{align}
& 2\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)2\left( x+\dfrac{5}{2} \right)=91 \\
& or \\
& 4\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)\left( x+\dfrac{5}{2} \right)=91......\left( 2 \right) \\
\end{align}\]
Now, let us take another variable ‘y’ which can be obtained by getting average of all brackets as follows;
$\begin{align}
& y=\dfrac{x-\dfrac{7}{2}+x-3+x+3+x+\dfrac{5}{2}}{4} \\
& y=\dfrac{4x-1}{4} \\
& y=x-\dfrac{1}{4} \\
& or \\
& x=y+\dfrac{1}{4}........................\left( 3 \right) \\
\end{align}$
Now, we can replace variable ‘x’ by ‘y’ in equation (2) with the help of relation obtained in equation (3);
Hence, equation (3) in variable ‘y’ can be expressed as;
$\begin{align}
& 4\left( y+\dfrac{1}{4}-\dfrac{7}{2} \right)\left( y+\dfrac{1}{4}-3 \right)\left( y+\dfrac{1}{4}+3 \right)\left( y+\dfrac{1}{4}+\dfrac{5}{2} \right)=91 \\
& 4\left( y+\dfrac{1-14}{4} \right)\left( y+\dfrac{1-12}{4} \right)\left( y+\dfrac{1+12}{4} \right)\left( y+\dfrac{1+10}{4} \right)=91 \\
& 4\left( y-\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y+\dfrac{11}{4} \right)=91 \\
& Or \\
& 4\left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)=91...........\left( 4 \right) \\
\end{align}$
As, we know $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.$ therefore, we can replace
$\begin{align}
& \left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}}, \\
& and \\
& \left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{11}{4} \right)}^{2}} \\
\end{align}$
Hence, rewriting equation (4) , we get
\[\begin{align}
& 4\left( {{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}} \right)\left( {{y}^{2}}-\dfrac{{{\left( 11 \right)}^{2}}}{{{\left( 4 \right)}^{2}}} \right)=91 \\
& 4\left( {{y}^{2}}-\dfrac{169}{16} \right)\left( {{y}^{2}}-\dfrac{121}{16} \right)=91 \\
\end{align}\]
Taking ${{y}^{2}}=z$ to minimize the complexity of problem in above equation, we get
$\begin{align}
& 4\left( z-\dfrac{169}{16} \right)\left( z-\dfrac{121}{16} \right)=91 \\
& 4\dfrac{\left( 16z-169 \right)\left( 16z-121 \right)}{16\times 16}=91 \\
\end{align}$
On simplifying the above equation and cross multiplying as well, we get;
$\left( 16z-169 \right)\left( 16z-121 \right)=64\times 91$
Multiplying both the brackets, we get
\[\begin{align}
& 256{{z}^{2}}-121\times 16z-169\times 16z+169\times 121=64\times 91 \\
& 256{{z}^{2}}-290z\times 16+169\times 121=64\times 91 \\
& 256{{z}^{2}}-4640z+14625=0.............\left( 5 \right) \\
\end{align}\]
Now, we have a quadratic equation, so it will have two roots and can be given by quadratic formula as given below;
If, we have any quadratic equation,$A{{x}^{2}}Bx+C=0$, then roots of quadratic equation are;
$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}$
Now, using the quadratic formula with equation (5), we get;
$\begin{align}
& z=\dfrac{4640\pm \sqrt{{{\left( 4640 \right)}^{2}}-4\times 256\times 14625}}{2\times 256} \\
& z=\dfrac{4640\pm \sqrt{6553600}}{2\times 256} \\
\end{align}$
Now, as we know that $\sqrt{6553600}=2560$ ,
Hence, roots can be simplified as;
$\begin{align}
& z=\dfrac{4640\pm 2560}{512} \\
& z=\dfrac{4640}{512}\pm \dfrac{2560}{512} \\
\end{align}$
Simplifying z, we get;
$z=\dfrac{145}{16}\pm 5$
Now, we have two roots as
$\begin{align}
& z=\dfrac{145+80}{16} \\
& and \\
& z=\dfrac{145-80}{16} \\
& z=\dfrac{225}{16},\dfrac{65}{16}......................\left( 6 \right) \\
\end{align}$
Now, we have ${{y}^{2}}=z$
Hence,
\[\begin{align}
& y=\pm \sqrt{\dfrac{225}{16}},y=\pm \sqrt{\dfrac{65}{16}} \\
& Or \\
& y=\dfrac{\pm 15}{4},y=\dfrac{\pm \sqrt{65}}{4} \\
\end{align}\]
Now, for calculating x, we have to use equation (3) i.e. \[x=y+\dfrac{1}{4}\];
Hence, we get
$\begin{align}
& x=\dfrac{\pm 15}{4}+\dfrac{1}{4} \\
& and \\
& x=\pm \dfrac{\sqrt{65}}{4}+\dfrac{1}{4} \\
\end{align}$
Now four values of x, can be given as
$\begin{align}
& x=\dfrac{15+1}{4},\dfrac{-15+1}{4},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\
& Or \\
& x=4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\
\end{align}$
Therefore, values of ‘x’ after solving the given equation are;
$\left( 4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \right)$
Note: One can multiply the brackets to get bi-quadratic equation but it is really complex to get all four solutions from that equation. We have to put a lot of value into getting roots. And one cannot predict $\dfrac{-7}{2}$ as a root. Hence, this approach is more complex than the given solution.
Calculation is an important task of this question as we have to multiply bigger numbers and calculating square root of 6553600, one can go wrong with calculations as well.
Taking an average of four brackets is the key point of the question.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
