Answer

Verified

435.3k+ views

Hint: Factorize, ${{x}^{2}}-9=\left( x-3 \right)\left( x+3 \right).$ Take average of all four brackets and replace it with another variable. Form biquadratic simpler than given.

The given equation is;

$\left( 2x-7 \right)\left( {{x}^{2}}-9 \right)\left( 2x+5 \right)=91..........\left( 1 \right)$

As, we know ${{a}^{2}}-{{b}^{2}}=\left( a-6 \right)\left( a+b \right)$; we can use this identity with ${{x}^{2}}-9={{x}^{2}}-{{3}^{2}}$ and replace it with $\left( x-3 \right)\left( x+3 \right)$. Hence, equation (1) will become;

$\left( 2x-7 \right)\left( x-3 \right)\left( x+3 \right)\left( 2x+5 \right)=91$

Taking out ‘2’ as a common from first bracket and last bracket of above equation, we get

\[\begin{align}

& 2\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)2\left( x+\dfrac{5}{2} \right)=91 \\

& or \\

& 4\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)\left( x+\dfrac{5}{2} \right)=91......\left( 2 \right) \\

\end{align}\]

Now, let us take another variable ‘y’ which can be obtained by getting average of all brackets as follows;

$\begin{align}

& y=\dfrac{x-\dfrac{7}{2}+x-3+x+3+x+\dfrac{5}{2}}{4} \\

& y=\dfrac{4x-1}{4} \\

& y=x-\dfrac{1}{4} \\

& or \\

& x=y+\dfrac{1}{4}........................\left( 3 \right) \\

\end{align}$

Now, we can replace variable ‘x’ by ‘y’ in equation (2) with the help of relation obtained in equation (3);

Hence, equation (3) in variable ‘y’ can be expressed as;

$\begin{align}

& 4\left( y+\dfrac{1}{4}-\dfrac{7}{2} \right)\left( y+\dfrac{1}{4}-3 \right)\left( y+\dfrac{1}{4}+3 \right)\left( y+\dfrac{1}{4}+\dfrac{5}{2} \right)=91 \\

& 4\left( y+\dfrac{1-14}{4} \right)\left( y+\dfrac{1-12}{4} \right)\left( y+\dfrac{1+12}{4} \right)\left( y+\dfrac{1+10}{4} \right)=91 \\

& 4\left( y-\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y+\dfrac{11}{4} \right)=91 \\

& Or \\

& 4\left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)=91...........\left( 4 \right) \\

\end{align}$

As, we know $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.$ therefore, we can replace

$\begin{align}

& \left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}}, \\

& and \\

& \left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{11}{4} \right)}^{2}} \\

\end{align}$

Hence, rewriting equation (4) , we get

\[\begin{align}

& 4\left( {{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}} \right)\left( {{y}^{2}}-\dfrac{{{\left( 11 \right)}^{2}}}{{{\left( 4 \right)}^{2}}} \right)=91 \\

& 4\left( {{y}^{2}}-\dfrac{169}{16} \right)\left( {{y}^{2}}-\dfrac{121}{16} \right)=91 \\

\end{align}\]

Taking ${{y}^{2}}=z$ to minimize the complexity of problem in above equation, we get

$\begin{align}

& 4\left( z-\dfrac{169}{16} \right)\left( z-\dfrac{121}{16} \right)=91 \\

& 4\dfrac{\left( 16z-169 \right)\left( 16z-121 \right)}{16\times 16}=91 \\

\end{align}$

On simplifying the above equation and cross multiplying as well, we get;

$\left( 16z-169 \right)\left( 16z-121 \right)=64\times 91$

Multiplying both the brackets, we get

\[\begin{align}

& 256{{z}^{2}}-121\times 16z-169\times 16z+169\times 121=64\times 91 \\

& 256{{z}^{2}}-290z\times 16+169\times 121=64\times 91 \\

& 256{{z}^{2}}-4640z+14625=0.............\left( 5 \right) \\

\end{align}\]

Now, we have a quadratic equation, so it will have two roots and can be given by quadratic formula as given below;

If, we have any quadratic equation,$A{{x}^{2}}Bx+C=0$, then roots of quadratic equation are;

$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}$

Now, using the quadratic formula with equation (5), we get;

$\begin{align}

& z=\dfrac{4640\pm \sqrt{{{\left( 4640 \right)}^{2}}-4\times 256\times 14625}}{2\times 256} \\

& z=\dfrac{4640\pm \sqrt{6553600}}{2\times 256} \\

\end{align}$

Now, as we know that $\sqrt{6553600}=2560$ ,

Hence, roots can be simplified as;

$\begin{align}

& z=\dfrac{4640\pm 2560}{512} \\

& z=\dfrac{4640}{512}\pm \dfrac{2560}{512} \\

\end{align}$

Simplifying z, we get;

$z=\dfrac{145}{16}\pm 5$

Now, we have two roots as

$\begin{align}

& z=\dfrac{145+80}{16} \\

& and \\

& z=\dfrac{145-80}{16} \\

& z=\dfrac{225}{16},\dfrac{65}{16}......................\left( 6 \right) \\

\end{align}$

Now, we have ${{y}^{2}}=z$

Hence,

\[\begin{align}

& y=\pm \sqrt{\dfrac{225}{16}},y=\pm \sqrt{\dfrac{65}{16}} \\

& Or \\

& y=\dfrac{\pm 15}{4},y=\dfrac{\pm \sqrt{65}}{4} \\

\end{align}\]

Now, for calculating x, we have to use equation (3) i.e. \[x=y+\dfrac{1}{4}\];

Hence, we get

$\begin{align}

& x=\dfrac{\pm 15}{4}+\dfrac{1}{4} \\

& and \\

& x=\pm \dfrac{\sqrt{65}}{4}+\dfrac{1}{4} \\

\end{align}$

Now four values of x, can be given as

$\begin{align}

& x=\dfrac{15+1}{4},\dfrac{-15+1}{4},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\

& Or \\

& x=4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\

\end{align}$

Therefore, values of ‘x’ after solving the given equation are;

$\left( 4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \right)$

Note: One can multiply the brackets to get bi-quadratic equation but it is really complex to get all four solutions from that equation. We have to put a lot of value into getting roots. And one cannot predict $\dfrac{-7}{2}$ as a root. Hence, this approach is more complex than the given solution.

Calculation is an important task of this question as we have to multiply bigger numbers and calculating square root of 6553600, one can go wrong with calculations as well.

Taking an average of four brackets is the key point of the question.

__Complete step-by-step answer:__The given equation is;

$\left( 2x-7 \right)\left( {{x}^{2}}-9 \right)\left( 2x+5 \right)=91..........\left( 1 \right)$

As, we know ${{a}^{2}}-{{b}^{2}}=\left( a-6 \right)\left( a+b \right)$; we can use this identity with ${{x}^{2}}-9={{x}^{2}}-{{3}^{2}}$ and replace it with $\left( x-3 \right)\left( x+3 \right)$. Hence, equation (1) will become;

$\left( 2x-7 \right)\left( x-3 \right)\left( x+3 \right)\left( 2x+5 \right)=91$

Taking out ‘2’ as a common from first bracket and last bracket of above equation, we get

\[\begin{align}

& 2\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)2\left( x+\dfrac{5}{2} \right)=91 \\

& or \\

& 4\left( x-\dfrac{7}{2} \right)\left( x-3 \right)\left( x+3 \right)\left( x+\dfrac{5}{2} \right)=91......\left( 2 \right) \\

\end{align}\]

Now, let us take another variable ‘y’ which can be obtained by getting average of all brackets as follows;

$\begin{align}

& y=\dfrac{x-\dfrac{7}{2}+x-3+x+3+x+\dfrac{5}{2}}{4} \\

& y=\dfrac{4x-1}{4} \\

& y=x-\dfrac{1}{4} \\

& or \\

& x=y+\dfrac{1}{4}........................\left( 3 \right) \\

\end{align}$

Now, we can replace variable ‘x’ by ‘y’ in equation (2) with the help of relation obtained in equation (3);

Hence, equation (3) in variable ‘y’ can be expressed as;

$\begin{align}

& 4\left( y+\dfrac{1}{4}-\dfrac{7}{2} \right)\left( y+\dfrac{1}{4}-3 \right)\left( y+\dfrac{1}{4}+3 \right)\left( y+\dfrac{1}{4}+\dfrac{5}{2} \right)=91 \\

& 4\left( y+\dfrac{1-14}{4} \right)\left( y+\dfrac{1-12}{4} \right)\left( y+\dfrac{1+12}{4} \right)\left( y+\dfrac{1+10}{4} \right)=91 \\

& 4\left( y-\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y+\dfrac{11}{4} \right)=91 \\

& Or \\

& 4\left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)\left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)=91...........\left( 4 \right) \\

\end{align}$

As, we know $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.$ therefore, we can replace

$\begin{align}

& \left( y-\dfrac{13}{4} \right)\left( y+\dfrac{13}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}}, \\

& and \\

& \left( y-\dfrac{11}{4} \right)\left( y+\dfrac{11}{4} \right)by\text{ }{{y}^{2}}-{{\left( \dfrac{11}{4} \right)}^{2}} \\

\end{align}$

Hence, rewriting equation (4) , we get

\[\begin{align}

& 4\left( {{y}^{2}}-{{\left( \dfrac{13}{4} \right)}^{2}} \right)\left( {{y}^{2}}-\dfrac{{{\left( 11 \right)}^{2}}}{{{\left( 4 \right)}^{2}}} \right)=91 \\

& 4\left( {{y}^{2}}-\dfrac{169}{16} \right)\left( {{y}^{2}}-\dfrac{121}{16} \right)=91 \\

\end{align}\]

Taking ${{y}^{2}}=z$ to minimize the complexity of problem in above equation, we get

$\begin{align}

& 4\left( z-\dfrac{169}{16} \right)\left( z-\dfrac{121}{16} \right)=91 \\

& 4\dfrac{\left( 16z-169 \right)\left( 16z-121 \right)}{16\times 16}=91 \\

\end{align}$

On simplifying the above equation and cross multiplying as well, we get;

$\left( 16z-169 \right)\left( 16z-121 \right)=64\times 91$

Multiplying both the brackets, we get

\[\begin{align}

& 256{{z}^{2}}-121\times 16z-169\times 16z+169\times 121=64\times 91 \\

& 256{{z}^{2}}-290z\times 16+169\times 121=64\times 91 \\

& 256{{z}^{2}}-4640z+14625=0.............\left( 5 \right) \\

\end{align}\]

Now, we have a quadratic equation, so it will have two roots and can be given by quadratic formula as given below;

If, we have any quadratic equation,$A{{x}^{2}}Bx+C=0$, then roots of quadratic equation are;

$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}$

Now, using the quadratic formula with equation (5), we get;

$\begin{align}

& z=\dfrac{4640\pm \sqrt{{{\left( 4640 \right)}^{2}}-4\times 256\times 14625}}{2\times 256} \\

& z=\dfrac{4640\pm \sqrt{6553600}}{2\times 256} \\

\end{align}$

Now, as we know that $\sqrt{6553600}=2560$ ,

Hence, roots can be simplified as;

$\begin{align}

& z=\dfrac{4640\pm 2560}{512} \\

& z=\dfrac{4640}{512}\pm \dfrac{2560}{512} \\

\end{align}$

Simplifying z, we get;

$z=\dfrac{145}{16}\pm 5$

Now, we have two roots as

$\begin{align}

& z=\dfrac{145+80}{16} \\

& and \\

& z=\dfrac{145-80}{16} \\

& z=\dfrac{225}{16},\dfrac{65}{16}......................\left( 6 \right) \\

\end{align}$

Now, we have ${{y}^{2}}=z$

Hence,

\[\begin{align}

& y=\pm \sqrt{\dfrac{225}{16}},y=\pm \sqrt{\dfrac{65}{16}} \\

& Or \\

& y=\dfrac{\pm 15}{4},y=\dfrac{\pm \sqrt{65}}{4} \\

\end{align}\]

Now, for calculating x, we have to use equation (3) i.e. \[x=y+\dfrac{1}{4}\];

Hence, we get

$\begin{align}

& x=\dfrac{\pm 15}{4}+\dfrac{1}{4} \\

& and \\

& x=\pm \dfrac{\sqrt{65}}{4}+\dfrac{1}{4} \\

\end{align}$

Now four values of x, can be given as

$\begin{align}

& x=\dfrac{15+1}{4},\dfrac{-15+1}{4},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\

& Or \\

& x=4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \\

\end{align}$

Therefore, values of ‘x’ after solving the given equation are;

$\left( 4,\dfrac{-7}{2},\dfrac{\sqrt{65}+1}{4},\dfrac{-\sqrt{65}+1}{4} \right)$

Note: One can multiply the brackets to get bi-quadratic equation but it is really complex to get all four solutions from that equation. We have to put a lot of value into getting roots. And one cannot predict $\dfrac{-7}{2}$ as a root. Hence, this approach is more complex than the given solution.

Calculation is an important task of this question as we have to multiply bigger numbers and calculating square root of 6553600, one can go wrong with calculations as well.

Taking an average of four brackets is the key point of the question.

Recently Updated Pages

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

Trending doubts

What was the Metternich system and how did it provide class 11 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What organs are located on the left side of your body class 11 biology CBSE

What is pollution? How many types of pollution? Define it