Solve the following equations:
$4{{x}^{2}}+5y=6+20xy-25{{y}^{2}}+2x;\text{ }7x-11y=17$.
A) $4,1$
B) $\dfrac{107}{13},\dfrac{48}{13}$
C) $5,2$
D) $12,5$
Answer
328.2k+ views
Hint: We will have to perform the substitution method to solve the above given equations, i.e., solving for either x or y from one of the equations and substituting it in another equation.
Complete step-by-step answer:
Here, we have two equations to solve and there are two variables in those equations. So, it is possible for us to find out the unique solutions for the variables, i.e.,
$4{{x}^{2}}+5y=6+20xy-25{{y}^{2}}+2x\ldots \text{ }\left( 1 \right)$
$7x-11y=17\ldots \text{ }\left( 2 \right)$
From equation (1), we have a 2-degree equation so we can say that for a 2-degree equation we get two values for each variable. And we can solve the given equations by substituting the values of one variable in other, i.e.,
From equation (2),
$\begin{align}
& \Rightarrow 7x-11y=17 \\
& \Rightarrow 7x=17+11y \\
\end{align}$
$\Rightarrow x=\dfrac{17+11y}{7}\ldots \text{ }\left( 3 \right)$
Now we will have to substitute this value of x in equation (1) and from equation (1), we have
$\Rightarrow 4{{x}^{2}}+5y=6+20xy-25{{y}^{2}}+2x$
Thus, substituting value of x from equation (3) in the above equation, we get
$\begin{align}
& \Rightarrow 4{{x}^{2}}+5y=6+20xy-25{{y}^{2}}+2x \\
& \Rightarrow 4{{\left( \dfrac{17+11y}{7} \right)}^{2}}+5y=6+20\left( \dfrac{17+11y}{7} \right)y-25{{y}^{2}}+2\left( \dfrac{17+11y}{7} \right) \\
\end{align}$
Now, we have to solve the above equation for y by transposing and cross-multiplications.
Using the formula of ${{(a+b)}^{2}}=({{a}^{2}}+{{b}^{2}}+2ab)$, we get
\[\begin{align}
& \Rightarrow 4{{\left( \dfrac{17+11y}{7} \right)}^{2}}+5y=6+20\left( \dfrac{17+11y}{7} \right)y-25{{y}^{2}}+2\left( \dfrac{17+11y}{7} \right) \\
& \Rightarrow 4\left( \dfrac{{{\left( 17 \right)}^{2}}+{{\left( 11y \right)}^{2}}+2\left( 17 \right)\left( 11y \right)}{{{7}^{2}}} \right)+5y=6+20\left( \dfrac{17+11y}{7} \right)y-25{{y}^{2}}+2\left( \dfrac{17+11y}{7} \right) \\
\end{align}\]
Now, opening the above formula with substituted values, we get
\[\Rightarrow 4\left( \dfrac{289+121{{y}^{2}}+374y}{49} \right)+5y=6+20\left( \dfrac{17+11y}{7} \right)y-25{{y}^{2}}+2\left( \dfrac{17+11y}{7} \right)\]
Taking the LCM of the denominators, we get
\[\Rightarrow \left( \dfrac{4\left( 289+121{{y}^{2}}+374y \right)}{49} \right)+5y=6+20\left( \dfrac{17+11y}{7} \right)y-25{{y}^{2}}+2\left( \dfrac{17+11y}{7} \right)\]
\[\Rightarrow \left( \dfrac{1156+484{{y}^{2}}+1496y+\left( 49 \right)\left( 5y \right)}{49} \right)=\dfrac{\left( 6\times 7 \right)+20\left( 17+11y \right)y-\left( 25\times 7 \right){{y}^{2}}+2\left( 17+11y \right)}{7}\]
\[\Rightarrow \left( \dfrac{1156+484{{y}^{2}}+1496y+245y}{49} \right)=\dfrac{42+340y+220{{y}^{2}}-175{{y}^{2}}+34+22y}{7}\]
On cross-multiplying the denominator from left-hand side to right-hand side, we get
\[\begin{align}
& \Rightarrow \left( 1156+484{{y}^{2}}+1741y \right)=49\left( \dfrac{76+362y+45{{y}^{2}}}{7} \right) \\
& \Rightarrow \left( 1156+484{{y}^{2}}+1741y \right)=7\left( 76+362y+45{{y}^{2}} \right) \\
& \Rightarrow \left( 1156+484{{y}^{2}}+1741y \right)=\left( 532+2534y+315{{y}^{2}} \right) \\
\end{align}\]
Now, on transposing similar terms from LHS to RHS, we get
\[\begin{align}
& \Rightarrow \left( 1156+484{{y}^{2}}+1741y \right)=\left( 532+2534y+315{{y}^{2}} \right) \\
& \Rightarrow \left( 1156-532+484{{y}^{2}}-315{{y}^{2}}+1741y-2534y \right)=0 \\
& \Rightarrow 169{{y}^{2}}-793y+624=0 \\
\end{align}\]
Rearranging terms in above equation, we get
\[\begin{align}
& \Rightarrow 169{{y}^{2}}-793y+624=0 \\
& \Rightarrow 13{{y}^{2}}-61y+48=0\ldots \text{ }\left( 4 \right) \\
\end{align}\]
We can solve the equation (4), by performing middle-term split method, i.e.,
\[\begin{align}
& \Rightarrow 13{{y}^{2}}-61y+48=0 \\
& \Rightarrow 13{{y}^{2}}-13y-48y+48=0 \\
& \Rightarrow 13y\left( y-1 \right)-48\left( y-1 \right)=0 \\
& \Rightarrow \left( 13y-48 \right)\left( y-1 \right)=0 \\
& \Rightarrow y=\dfrac{48}{13};\text{ }y=1 \\
\end{align}\]
Now, we have two values of y. Substituting the above values of y back in equation (3), we get
For $y=\dfrac{48}{13}$,
$\begin{align}
& \Rightarrow x=\dfrac{17+11y}{7} \\
& \Rightarrow x=\dfrac{17+\left( 11\times \dfrac{48}{13} \right)}{7} \\
& \Rightarrow x=\dfrac{221+528}{91} \\
& \Rightarrow x=\dfrac{749}{91}=\dfrac{107}{13} \\
\end{align}$
We get, $\left( x,y \right)=\left( \dfrac{107}{13},\dfrac{48}{13} \right)$.
Also, substituting the other value of y in equation (3), we get
For $y=1$,
$\begin{align}
& \Rightarrow x=\dfrac{17+11y}{7} \\
& \Rightarrow x=\dfrac{17+\left( 11\times 1 \right)}{7} \\
& \Rightarrow x=\dfrac{28}{7} \\
& \Rightarrow x=4 \\
\end{align}$
Thus, we get $\left( x,y \right)=\left( 4,1 \right)$.
Hence, the following solutions to our equations are: \[\left( 4,\text{ }1 \right)\text{; }\left( \dfrac{107}{13},\text{ }\dfrac{48}{13} \right)\], i.e., Option (A), (B) are correct.
Note: There is a shortcut method to solve the above equations instead of performing lengthy middle term split method, we can use direct formula for solving roots of quadratic equation, i.e., $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Complete step-by-step answer:
Here, we have two equations to solve and there are two variables in those equations. So, it is possible for us to find out the unique solutions for the variables, i.e.,
$4{{x}^{2}}+5y=6+20xy-25{{y}^{2}}+2x\ldots \text{ }\left( 1 \right)$
$7x-11y=17\ldots \text{ }\left( 2 \right)$
From equation (1), we have a 2-degree equation so we can say that for a 2-degree equation we get two values for each variable. And we can solve the given equations by substituting the values of one variable in other, i.e.,
From equation (2),
$\begin{align}
& \Rightarrow 7x-11y=17 \\
& \Rightarrow 7x=17+11y \\
\end{align}$
$\Rightarrow x=\dfrac{17+11y}{7}\ldots \text{ }\left( 3 \right)$
Now we will have to substitute this value of x in equation (1) and from equation (1), we have
$\Rightarrow 4{{x}^{2}}+5y=6+20xy-25{{y}^{2}}+2x$
Thus, substituting value of x from equation (3) in the above equation, we get
$\begin{align}
& \Rightarrow 4{{x}^{2}}+5y=6+20xy-25{{y}^{2}}+2x \\
& \Rightarrow 4{{\left( \dfrac{17+11y}{7} \right)}^{2}}+5y=6+20\left( \dfrac{17+11y}{7} \right)y-25{{y}^{2}}+2\left( \dfrac{17+11y}{7} \right) \\
\end{align}$
Now, we have to solve the above equation for y by transposing and cross-multiplications.
Using the formula of ${{(a+b)}^{2}}=({{a}^{2}}+{{b}^{2}}+2ab)$, we get
\[\begin{align}
& \Rightarrow 4{{\left( \dfrac{17+11y}{7} \right)}^{2}}+5y=6+20\left( \dfrac{17+11y}{7} \right)y-25{{y}^{2}}+2\left( \dfrac{17+11y}{7} \right) \\
& \Rightarrow 4\left( \dfrac{{{\left( 17 \right)}^{2}}+{{\left( 11y \right)}^{2}}+2\left( 17 \right)\left( 11y \right)}{{{7}^{2}}} \right)+5y=6+20\left( \dfrac{17+11y}{7} \right)y-25{{y}^{2}}+2\left( \dfrac{17+11y}{7} \right) \\
\end{align}\]
Now, opening the above formula with substituted values, we get
\[\Rightarrow 4\left( \dfrac{289+121{{y}^{2}}+374y}{49} \right)+5y=6+20\left( \dfrac{17+11y}{7} \right)y-25{{y}^{2}}+2\left( \dfrac{17+11y}{7} \right)\]
Taking the LCM of the denominators, we get
\[\Rightarrow \left( \dfrac{4\left( 289+121{{y}^{2}}+374y \right)}{49} \right)+5y=6+20\left( \dfrac{17+11y}{7} \right)y-25{{y}^{2}}+2\left( \dfrac{17+11y}{7} \right)\]
\[\Rightarrow \left( \dfrac{1156+484{{y}^{2}}+1496y+\left( 49 \right)\left( 5y \right)}{49} \right)=\dfrac{\left( 6\times 7 \right)+20\left( 17+11y \right)y-\left( 25\times 7 \right){{y}^{2}}+2\left( 17+11y \right)}{7}\]
\[\Rightarrow \left( \dfrac{1156+484{{y}^{2}}+1496y+245y}{49} \right)=\dfrac{42+340y+220{{y}^{2}}-175{{y}^{2}}+34+22y}{7}\]
On cross-multiplying the denominator from left-hand side to right-hand side, we get
\[\begin{align}
& \Rightarrow \left( 1156+484{{y}^{2}}+1741y \right)=49\left( \dfrac{76+362y+45{{y}^{2}}}{7} \right) \\
& \Rightarrow \left( 1156+484{{y}^{2}}+1741y \right)=7\left( 76+362y+45{{y}^{2}} \right) \\
& \Rightarrow \left( 1156+484{{y}^{2}}+1741y \right)=\left( 532+2534y+315{{y}^{2}} \right) \\
\end{align}\]
Now, on transposing similar terms from LHS to RHS, we get
\[\begin{align}
& \Rightarrow \left( 1156+484{{y}^{2}}+1741y \right)=\left( 532+2534y+315{{y}^{2}} \right) \\
& \Rightarrow \left( 1156-532+484{{y}^{2}}-315{{y}^{2}}+1741y-2534y \right)=0 \\
& \Rightarrow 169{{y}^{2}}-793y+624=0 \\
\end{align}\]
Rearranging terms in above equation, we get
\[\begin{align}
& \Rightarrow 169{{y}^{2}}-793y+624=0 \\
& \Rightarrow 13{{y}^{2}}-61y+48=0\ldots \text{ }\left( 4 \right) \\
\end{align}\]
We can solve the equation (4), by performing middle-term split method, i.e.,
\[\begin{align}
& \Rightarrow 13{{y}^{2}}-61y+48=0 \\
& \Rightarrow 13{{y}^{2}}-13y-48y+48=0 \\
& \Rightarrow 13y\left( y-1 \right)-48\left( y-1 \right)=0 \\
& \Rightarrow \left( 13y-48 \right)\left( y-1 \right)=0 \\
& \Rightarrow y=\dfrac{48}{13};\text{ }y=1 \\
\end{align}\]
Now, we have two values of y. Substituting the above values of y back in equation (3), we get
For $y=\dfrac{48}{13}$,
$\begin{align}
& \Rightarrow x=\dfrac{17+11y}{7} \\
& \Rightarrow x=\dfrac{17+\left( 11\times \dfrac{48}{13} \right)}{7} \\
& \Rightarrow x=\dfrac{221+528}{91} \\
& \Rightarrow x=\dfrac{749}{91}=\dfrac{107}{13} \\
\end{align}$
We get, $\left( x,y \right)=\left( \dfrac{107}{13},\dfrac{48}{13} \right)$.
Also, substituting the other value of y in equation (3), we get
For $y=1$,
$\begin{align}
& \Rightarrow x=\dfrac{17+11y}{7} \\
& \Rightarrow x=\dfrac{17+\left( 11\times 1 \right)}{7} \\
& \Rightarrow x=\dfrac{28}{7} \\
& \Rightarrow x=4 \\
\end{align}$
Thus, we get $\left( x,y \right)=\left( 4,1 \right)$.
Hence, the following solutions to our equations are: \[\left( 4,\text{ }1 \right)\text{; }\left( \dfrac{107}{13},\text{ }\dfrac{48}{13} \right)\], i.e., Option (A), (B) are correct.
Note: There is a shortcut method to solve the above equations instead of performing lengthy middle term split method, we can use direct formula for solving roots of quadratic equation, i.e., $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
Last updated date: 04th Jun 2023
•
Total views: 328.2k
•
Views today: 2.84k
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
