Solve the following equation: ${x^4} + 1 - 3\left( {{x^3} + x} \right) = 2{x^2}$.
Answer
Verified
511.2k+ views
Hint: Here, we will proceed by replacing $x$ by $\dfrac{1}{x}$in the given equation in order to prove that it will come out as the same.
Given, equation is ${x^4} + 1 - 3\left( {{x^3} + x} \right) = 2{x^2} \Rightarrow {x^4} - 3{x^3} - 2{x^2} - 3x + 1 = 0{\text{ }} \to {\text{(1)}}$
Let us replace $x$ by $\dfrac{1}{x}$ in equation (1), we get
$
\Rightarrow {\left( {\dfrac{1}{x}} \right)^4} - 3{\left( {\dfrac{1}{x}} \right)^3} - 2{\left( {\dfrac{1}{x}} \right)^2} - \dfrac{3}{x} + 1 = 0{\text{ }} \Rightarrow \dfrac{1}{{{x^4}}} - \dfrac{3}{{{x^3}}} - \dfrac{2}{{{x^2}}} - \dfrac{3}{x} + 1 = 0{\text{ }} \Rightarrow \dfrac{{1 - 3x - 2{x^2} - 3{x^3} + {x^4}}}{{{x^4}}} = 0 \\
\Rightarrow {x^4} - 3{x^3} - 2{x^2} - 3x + 1 = 0 \\
$
Clearly, the above equation which is obtained by replacing $x$ by $\dfrac{1}{x}$in the given equation (1) is the same as the given equation (1).
As, we know that when in a polynomial of degree four (having two roots as $\alpha $ and $\beta $ ) if $x$ is replaced by $\dfrac{1}{x}$ and the polynomial comes out to be same as previous one then the other two roots of that polynomial will be $\dfrac{1}{\alpha }$ and $\dfrac{1}{\beta }$.
Also, for any general polynomial of degree four \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\]
\[
{\text{Sum of all the roots}} = - \dfrac{b}{a} \\
{\text{Sum of product of different roots taken two at a time }} = \dfrac{c}{a} \\
\]
According to the given equation (1), we can say \[a = 1\],\[b = - 3\],\[c = - 2\],\[d = - 3\]and \[e = 1\].
Therefore, Sum of all the roots of the given equation (1) is given by \[\alpha + \beta + \dfrac{1}{\alpha } + \dfrac{1}{\beta } = - \dfrac{{\left( { - 3} \right)}}{1} = 3{\text{ }} \to {\text{(2)}}\]
Sum of product of different roots taken two at a time of the given equation (1) is given by
\[
\alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\beta {\text{.}}\dfrac{1}{\beta }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = \dfrac{{\left( { - 2} \right)}}{1} = - 2 \\
\Rightarrow \alpha \beta {\text{ + }}1{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}1{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = - 2 \Rightarrow \alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta } = - 2 - 2 = - 4 \\
\]
\[ \Rightarrow \alpha \left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right){\text{ + }}\dfrac{1}{\alpha }\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - 4 \Rightarrow \left( {\alpha + \dfrac{1}{\alpha }} \right)\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - 4{\text{ }} \to {\text{(3)}}\]
Now, equation (2) can be re-arranged as \[\left( {\alpha + \dfrac{1}{\alpha }} \right) = 3 - \left( {\beta + \dfrac{1}{\beta }} \right)\]
Put the value of \[\left( {\alpha + \dfrac{1}{\alpha }} \right){\text{ }}\]in equation (3), we get
\[\left[ {3 - \left( {\beta + \dfrac{1}{\beta }} \right)} \right]\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - 4\]
Let \[\left( {\beta + \dfrac{1}{\beta }} \right) = t\]
\[
\Rightarrow \left[ {3 - t} \right]t = - 4 \Rightarrow {t^2} - 3t - 4 = 0 \Rightarrow {t^2} + t - 4t - 4 = 0 \Rightarrow t\left( {t + 1} \right) - 4\left( {t + 1} \right) = 0 \\
\Rightarrow \left( {t + 1} \right)\left( {t - 4} \right) = 0 \\
\]
\[ \Rightarrow t = - 1\] or \[t = 4\]
\[\beta + \dfrac{1}{\beta } = - 1 \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = - 1 \Rightarrow {\beta ^2} + \beta + 1 = 0 \Rightarrow \beta = \dfrac{{ - \left( 1 \right) \pm \sqrt {{{\left( 1 \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}} = \dfrac{{ - 1 \pm \sqrt {1 - 4} }}{2} = \dfrac{{ - 1 \pm i\sqrt 3 }}{2}\] or \[\beta + \dfrac{1}{\beta } = 4 \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = 4 \Rightarrow {\beta ^2} - 4\beta + 1 = 0 \Rightarrow \beta = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}} = \dfrac{{4 \pm \sqrt {16 - 4} }}{2} = \dfrac{{4 \pm 2\sqrt 3 }}{2} = 2 \pm \sqrt 3 \]
Hence, \[\beta = \dfrac{{ - 1 \pm i\sqrt 3 }}{2}\]or \[\beta = 2 \pm \sqrt 3 \]
Using equation (2) put the value of \[\beta \], we will get the value for \[\alpha \]
\[\alpha = 2 \pm \sqrt 3 \]or \[\alpha = \dfrac{{ - 1 \pm i\sqrt 3 }}{2}\]
Therefore, all the roots of the given are \[2 \pm \sqrt 3 \], \[\dfrac{{ - 1 \pm i\sqrt 3 }}{2}\].
Note: These types of problems are solved by somehow checking for some properties regarding roots of a polynomial and then finding out an appropriate relation between the roots and hence solving further to get them.
Given, equation is ${x^4} + 1 - 3\left( {{x^3} + x} \right) = 2{x^2} \Rightarrow {x^4} - 3{x^3} - 2{x^2} - 3x + 1 = 0{\text{ }} \to {\text{(1)}}$
Let us replace $x$ by $\dfrac{1}{x}$ in equation (1), we get
$
\Rightarrow {\left( {\dfrac{1}{x}} \right)^4} - 3{\left( {\dfrac{1}{x}} \right)^3} - 2{\left( {\dfrac{1}{x}} \right)^2} - \dfrac{3}{x} + 1 = 0{\text{ }} \Rightarrow \dfrac{1}{{{x^4}}} - \dfrac{3}{{{x^3}}} - \dfrac{2}{{{x^2}}} - \dfrac{3}{x} + 1 = 0{\text{ }} \Rightarrow \dfrac{{1 - 3x - 2{x^2} - 3{x^3} + {x^4}}}{{{x^4}}} = 0 \\
\Rightarrow {x^4} - 3{x^3} - 2{x^2} - 3x + 1 = 0 \\
$
Clearly, the above equation which is obtained by replacing $x$ by $\dfrac{1}{x}$in the given equation (1) is the same as the given equation (1).
As, we know that when in a polynomial of degree four (having two roots as $\alpha $ and $\beta $ ) if $x$ is replaced by $\dfrac{1}{x}$ and the polynomial comes out to be same as previous one then the other two roots of that polynomial will be $\dfrac{1}{\alpha }$ and $\dfrac{1}{\beta }$.
Also, for any general polynomial of degree four \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\]
\[
{\text{Sum of all the roots}} = - \dfrac{b}{a} \\
{\text{Sum of product of different roots taken two at a time }} = \dfrac{c}{a} \\
\]
According to the given equation (1), we can say \[a = 1\],\[b = - 3\],\[c = - 2\],\[d = - 3\]and \[e = 1\].
Therefore, Sum of all the roots of the given equation (1) is given by \[\alpha + \beta + \dfrac{1}{\alpha } + \dfrac{1}{\beta } = - \dfrac{{\left( { - 3} \right)}}{1} = 3{\text{ }} \to {\text{(2)}}\]
Sum of product of different roots taken two at a time of the given equation (1) is given by
\[
\alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\beta {\text{.}}\dfrac{1}{\beta }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = \dfrac{{\left( { - 2} \right)}}{1} = - 2 \\
\Rightarrow \alpha \beta {\text{ + }}1{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}1{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = - 2 \Rightarrow \alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta } = - 2 - 2 = - 4 \\
\]
\[ \Rightarrow \alpha \left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right){\text{ + }}\dfrac{1}{\alpha }\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - 4 \Rightarrow \left( {\alpha + \dfrac{1}{\alpha }} \right)\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - 4{\text{ }} \to {\text{(3)}}\]
Now, equation (2) can be re-arranged as \[\left( {\alpha + \dfrac{1}{\alpha }} \right) = 3 - \left( {\beta + \dfrac{1}{\beta }} \right)\]
Put the value of \[\left( {\alpha + \dfrac{1}{\alpha }} \right){\text{ }}\]in equation (3), we get
\[\left[ {3 - \left( {\beta + \dfrac{1}{\beta }} \right)} \right]\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - 4\]
Let \[\left( {\beta + \dfrac{1}{\beta }} \right) = t\]
\[
\Rightarrow \left[ {3 - t} \right]t = - 4 \Rightarrow {t^2} - 3t - 4 = 0 \Rightarrow {t^2} + t - 4t - 4 = 0 \Rightarrow t\left( {t + 1} \right) - 4\left( {t + 1} \right) = 0 \\
\Rightarrow \left( {t + 1} \right)\left( {t - 4} \right) = 0 \\
\]
\[ \Rightarrow t = - 1\] or \[t = 4\]
\[\beta + \dfrac{1}{\beta } = - 1 \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = - 1 \Rightarrow {\beta ^2} + \beta + 1 = 0 \Rightarrow \beta = \dfrac{{ - \left( 1 \right) \pm \sqrt {{{\left( 1 \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}} = \dfrac{{ - 1 \pm \sqrt {1 - 4} }}{2} = \dfrac{{ - 1 \pm i\sqrt 3 }}{2}\] or \[\beta + \dfrac{1}{\beta } = 4 \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = 4 \Rightarrow {\beta ^2} - 4\beta + 1 = 0 \Rightarrow \beta = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \times 1 \times 1} }}{{2 \times 1}} = \dfrac{{4 \pm \sqrt {16 - 4} }}{2} = \dfrac{{4 \pm 2\sqrt 3 }}{2} = 2 \pm \sqrt 3 \]
Hence, \[\beta = \dfrac{{ - 1 \pm i\sqrt 3 }}{2}\]or \[\beta = 2 \pm \sqrt 3 \]
Using equation (2) put the value of \[\beta \], we will get the value for \[\alpha \]
\[\alpha = 2 \pm \sqrt 3 \]or \[\alpha = \dfrac{{ - 1 \pm i\sqrt 3 }}{2}\]
Therefore, all the roots of the given are \[2 \pm \sqrt 3 \], \[\dfrac{{ - 1 \pm i\sqrt 3 }}{2}\].
Note: These types of problems are solved by somehow checking for some properties regarding roots of a polynomial and then finding out an appropriate relation between the roots and hence solving further to get them.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE