
Solve the algebraic expression ${(x + y)^3} $.
Answer
520.5k+ views
Hint: In order to this question, to find the final value of the given algebraic expression ${(x + y)^3}$ , we will apply the algebraic formula, ${(a + b)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}$ or we can first split the expression and solve by ${(a + b)^2} = {a^2} + {b^2} + 2ab$ .
Complete step by step solution:
Given algebraic expression is ${(x + y)^3}$ .
We can solve the expression by the help of cube of binomial process:
Step-1: First write the cube of the binomial \[{(x + y)^3} = (x + y) \times (x + y) \times (x + y)\]
Step-2: Multiply the first two binomials and keep the third one as it is
\[
{(x + y)^3} = (x + y) \times (x + y) \times (x + y) \\
\Rightarrow {(x + y)^3} = [x(x + y) + y(x + y)](x + y) \\
\Rightarrow {(x + y)^3} = [{x^2} + xy + xy + {y^2}](x + y) \\
\Rightarrow {(x + y)^3} = [{x^2} + 2xy + {y^2}](x + y) \\
\]
Step 3: Multiply the remaining binomial to the trinomial so obtained:
\[
{(x + y)^3} = [{x^2} + 2xy + {y^2}](x + y) \\
\Rightarrow {(x + y)^3} = x({x^2} + 2xy + {y^2}) + y({x^2} + 2xy + {y^2}) \\
\Rightarrow {(x + y)^3} = {x^3} + 2{x^2}y + x{y^2} + {x^2}y + 2x{y^2} + {y^3} \\
\Rightarrow {(x + y)^3} = {x^3} + 2{x^2}y + {x^2}y + x{y^2} + 2x{y^2} + {y^3} \\
\Rightarrow {(x + y)^3} = {x^3} + 3{x^2}y + 3x{y^2} + {y^3} \\
\Rightarrow {(x + y)^3} = {x^3} + {y^3} + 3{x^2}y + 3x{y^2} \\
\Rightarrow {(x + y)^3} = {x^3} + {y^3} + 3xy(x + y) \\
\]
Note:
Alternative approach:
We can solve the given expression by the help of algebraic formula-
${(a + b)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}$
Or by splitting the expression in the simplest form first.
Both methods will acquire the same result.
So, we have-
$
{(x + y)^3} \\
= (x + y){(x + y)^2} \\
= (x + y)({x^2} + {y^2} + 2xy) \\
= {x^3} + x{y^2} + 2{x^2}y + {x^2}y + {y^3} + 2x{y^2} \\
= {x^3} + 3x{y^2} + 3{x^2}y + {y^3} \\
$
Hence, ${(x + y)^3} = {x^3} + 3x{y^2} + 3{x^2}y + {y^3}$.
An algebraic formula is a mathematical or algebraic law written as an equation. It's a two-sided equation with algebraic expressions on both sides. The algebraic formula is a simple, easy-to-remember formula for solving complex algebraic problems.
Complete step by step solution:
Given algebraic expression is ${(x + y)^3}$ .
We can solve the expression by the help of cube of binomial process:
Step-1: First write the cube of the binomial \[{(x + y)^3} = (x + y) \times (x + y) \times (x + y)\]
Step-2: Multiply the first two binomials and keep the third one as it is
\[
{(x + y)^3} = (x + y) \times (x + y) \times (x + y) \\
\Rightarrow {(x + y)^3} = [x(x + y) + y(x + y)](x + y) \\
\Rightarrow {(x + y)^3} = [{x^2} + xy + xy + {y^2}](x + y) \\
\Rightarrow {(x + y)^3} = [{x^2} + 2xy + {y^2}](x + y) \\
\]
Step 3: Multiply the remaining binomial to the trinomial so obtained:
\[
{(x + y)^3} = [{x^2} + 2xy + {y^2}](x + y) \\
\Rightarrow {(x + y)^3} = x({x^2} + 2xy + {y^2}) + y({x^2} + 2xy + {y^2}) \\
\Rightarrow {(x + y)^3} = {x^3} + 2{x^2}y + x{y^2} + {x^2}y + 2x{y^2} + {y^3} \\
\Rightarrow {(x + y)^3} = {x^3} + 2{x^2}y + {x^2}y + x{y^2} + 2x{y^2} + {y^3} \\
\Rightarrow {(x + y)^3} = {x^3} + 3{x^2}y + 3x{y^2} + {y^3} \\
\Rightarrow {(x + y)^3} = {x^3} + {y^3} + 3{x^2}y + 3x{y^2} \\
\Rightarrow {(x + y)^3} = {x^3} + {y^3} + 3xy(x + y) \\
\]
Note:
Alternative approach:
We can solve the given expression by the help of algebraic formula-
${(a + b)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}$
Or by splitting the expression in the simplest form first.
Both methods will acquire the same result.
So, we have-
$
{(x + y)^3} \\
= (x + y){(x + y)^2} \\
= (x + y)({x^2} + {y^2} + 2xy) \\
= {x^3} + x{y^2} + 2{x^2}y + {x^2}y + {y^3} + 2x{y^2} \\
= {x^3} + 3x{y^2} + 3{x^2}y + {y^3} \\
$
Hence, ${(x + y)^3} = {x^3} + 3x{y^2} + 3{x^2}y + {y^3}$.
An algebraic formula is a mathematical or algebraic law written as an equation. It's a two-sided equation with algebraic expressions on both sides. The algebraic formula is a simple, easy-to-remember formula for solving complex algebraic problems.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

