
How to solve \[\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\]?
Answer
533.7k+ views
Hint: Assume \[\sqrt[3]{2+\sqrt{5}}=x\] and cube both the sides. Now, find the value of \[\left( 2-\sqrt{5} \right)\] in terms of x by rationalizing \[\left( 2+\sqrt{5} \right)\]. To rationalize \[2+\sqrt{5}\] multiply and divide it with \[\left( 2-\sqrt{5} \right)\]. Now, use the formula: - \[{{\left( x-\dfrac{1}{x} \right)}^{3}}={{x}^{3}}-\dfrac{1}{{{x}^{3}}}-3\left( x-\dfrac{1}{x} \right)\] and assume \[\left( x-\dfrac{1}{x} \right)=k\]. Form a cubic equation in k and solve this equation to get the value of k which will be our answer.
Complete step by step solution:
Here, we have been provided with the expression: - \[\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\] and we are asked to solve it. That means we have to find the numerical value of this expression.
Now, let us assume \[\sqrt[3]{2+\sqrt{5}}=x\], so on cubing both the sides we get,
\[\Rightarrow 2+\sqrt{5}={{x}^{3}}\] - (1)
\[\Rightarrow {{x}^{3}}=2+\sqrt{5}\]
Rationalizing the R.H.S. by multiplying \[\left( 2+\sqrt{5} \right)\] with \[\left( 2-\sqrt{5} \right)\] and to balance the relation dividing it with \[\left( 2-\sqrt{5} \right)\], we get,
\[\Rightarrow {{x}^{3}}=\left( 2+\sqrt{5} \right)\times \left( \dfrac{2-\sqrt{5}}{2-\sqrt{5}} \right)\]
Using the identity: - \[\left( 2+\sqrt{5} \right)\left( 2-\sqrt{5} \right)={{2}^{2}}-{{\left( \sqrt{5} \right)}^{2}}\], i.e., \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\], we get,
\[\begin{align}
& \Rightarrow {{x}^{3}}=\dfrac{{{2}^{2}}-{{\left( \sqrt{5} \right)}^{2}}}{2-\sqrt{5}} \\
& \Rightarrow {{x}^{3}}=\dfrac{4-5}{2-\sqrt{5}} \\
& \Rightarrow {{x}^{3}}=\dfrac{-1}{2-\sqrt{5}} \\
\end{align}\]
By cross – multiplying we get,
\[\Rightarrow 2-\sqrt{5}=\dfrac{-1}{{{x}^{3}}}\] - (2)
Taking cube root both the sides, we get,
\[\Rightarrow \sqrt[3]{2-\sqrt{5}}=\dfrac{-1}{x}\]
Since, we have to find the value of \[\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\], so we have,
\[\Rightarrow \sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=x-\dfrac{1}{x}\]
That means we have to find the value of \[x-\dfrac{1}{x}\]. Let us find the whole cube of \[x-\dfrac{1}{x}\]. Using the formula: - \[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\], we have,
\[\begin{align}
& \Rightarrow {{\left( x-\dfrac{1}{x} \right)}^{3}}={{x}^{3}}-\dfrac{1}{{{x}^{3}}}-3x\times \dfrac{1}{x}\left( x-\dfrac{1}{x} \right) \\
& \Rightarrow {{\left( x-\dfrac{1}{x} \right)}^{3}}={{x}^{3}}-\dfrac{1}{{{x}^{3}}}-3\left( x-\dfrac{1}{x} \right) \\
\end{align}\]
Assuming \[\left( x-\dfrac{1}{x} \right)=k\], we have,
\[\Rightarrow {{k}^{3}}={{x}^{3}}-\dfrac{1}{{{x}^{3}}}-3k\]
Substituting the value of \[{{x}^{3}}\] and \[\dfrac{-1}{{{x}^{3}}}\] in the above relation using equations (1) and (2), we get,
\[\begin{align}
& \Rightarrow {{k}^{3}}=\left( 2+\sqrt{5} \right)-\left( 2+\sqrt{5} \right)-3k \\
& \Rightarrow {{k}^{3}}=4-3k \\
& \Rightarrow {{k}^{3}}+3k-4=0 \\
\end{align}\]
Since, this is a cubic equation in k so we have to find one root by the hit – and – trial method. Now, considering k = 1, we have,
\[\Rightarrow {{k}^{3}}+3k-4={{\left( 1 \right)}^{3}}+3\left( 1 \right)-4=0\]
Therefore, we can say that k = 1 is a root of the equation \[{{k}^{3}}+3k-4=0\]. So, we can factorize this equation as: -
\[\begin{align}
& \Rightarrow {{k}^{3}}+3k-4=0 \\
& \Rightarrow {{k}^{2}}\left( k-1 \right)+k\left( k-1 \right)+4\left( k-1 \right)=0 \\
& \Rightarrow \left( k-1 \right)\left( {{k}^{2}}+k+4 \right)=0 \\
\end{align}\]
Now, we can see that \[{{k}^{2}}+k+4\] will not have a real solution when it will be equated with 0, so the only value of k will be 1. The reason that \[{{k}^{2}}+k+4\] will not have any real solution is that the discriminant value of this quadratic equation is less than 0.
\[\begin{align}
& \Rightarrow k=1 \\
& \Rightarrow x-\dfrac{1}{x}=1 \\
& \Rightarrow \sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1 \\
\end{align}\]
Hence, the value of the given expression is 1.
Note: One may note that the expression \[\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\] will have only a real solution and that is why only one value of k was considered. Note that without rationalization we will not be able to solve this question as it will not be possible for us to find the cube root of \[2+\sqrt{5}\] and \[2-\sqrt{5}\]. You must remember the conditions for a quadratic equation to have real and imaginary roots.
Complete step by step solution:
Here, we have been provided with the expression: - \[\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\] and we are asked to solve it. That means we have to find the numerical value of this expression.
Now, let us assume \[\sqrt[3]{2+\sqrt{5}}=x\], so on cubing both the sides we get,
\[\Rightarrow 2+\sqrt{5}={{x}^{3}}\] - (1)
\[\Rightarrow {{x}^{3}}=2+\sqrt{5}\]
Rationalizing the R.H.S. by multiplying \[\left( 2+\sqrt{5} \right)\] with \[\left( 2-\sqrt{5} \right)\] and to balance the relation dividing it with \[\left( 2-\sqrt{5} \right)\], we get,
\[\Rightarrow {{x}^{3}}=\left( 2+\sqrt{5} \right)\times \left( \dfrac{2-\sqrt{5}}{2-\sqrt{5}} \right)\]
Using the identity: - \[\left( 2+\sqrt{5} \right)\left( 2-\sqrt{5} \right)={{2}^{2}}-{{\left( \sqrt{5} \right)}^{2}}\], i.e., \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\], we get,
\[\begin{align}
& \Rightarrow {{x}^{3}}=\dfrac{{{2}^{2}}-{{\left( \sqrt{5} \right)}^{2}}}{2-\sqrt{5}} \\
& \Rightarrow {{x}^{3}}=\dfrac{4-5}{2-\sqrt{5}} \\
& \Rightarrow {{x}^{3}}=\dfrac{-1}{2-\sqrt{5}} \\
\end{align}\]
By cross – multiplying we get,
\[\Rightarrow 2-\sqrt{5}=\dfrac{-1}{{{x}^{3}}}\] - (2)
Taking cube root both the sides, we get,
\[\Rightarrow \sqrt[3]{2-\sqrt{5}}=\dfrac{-1}{x}\]
Since, we have to find the value of \[\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\], so we have,
\[\Rightarrow \sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=x-\dfrac{1}{x}\]
That means we have to find the value of \[x-\dfrac{1}{x}\]. Let us find the whole cube of \[x-\dfrac{1}{x}\]. Using the formula: - \[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\], we have,
\[\begin{align}
& \Rightarrow {{\left( x-\dfrac{1}{x} \right)}^{3}}={{x}^{3}}-\dfrac{1}{{{x}^{3}}}-3x\times \dfrac{1}{x}\left( x-\dfrac{1}{x} \right) \\
& \Rightarrow {{\left( x-\dfrac{1}{x} \right)}^{3}}={{x}^{3}}-\dfrac{1}{{{x}^{3}}}-3\left( x-\dfrac{1}{x} \right) \\
\end{align}\]
Assuming \[\left( x-\dfrac{1}{x} \right)=k\], we have,
\[\Rightarrow {{k}^{3}}={{x}^{3}}-\dfrac{1}{{{x}^{3}}}-3k\]
Substituting the value of \[{{x}^{3}}\] and \[\dfrac{-1}{{{x}^{3}}}\] in the above relation using equations (1) and (2), we get,
\[\begin{align}
& \Rightarrow {{k}^{3}}=\left( 2+\sqrt{5} \right)-\left( 2+\sqrt{5} \right)-3k \\
& \Rightarrow {{k}^{3}}=4-3k \\
& \Rightarrow {{k}^{3}}+3k-4=0 \\
\end{align}\]
Since, this is a cubic equation in k so we have to find one root by the hit – and – trial method. Now, considering k = 1, we have,
\[\Rightarrow {{k}^{3}}+3k-4={{\left( 1 \right)}^{3}}+3\left( 1 \right)-4=0\]
Therefore, we can say that k = 1 is a root of the equation \[{{k}^{3}}+3k-4=0\]. So, we can factorize this equation as: -
\[\begin{align}
& \Rightarrow {{k}^{3}}+3k-4=0 \\
& \Rightarrow {{k}^{2}}\left( k-1 \right)+k\left( k-1 \right)+4\left( k-1 \right)=0 \\
& \Rightarrow \left( k-1 \right)\left( {{k}^{2}}+k+4 \right)=0 \\
\end{align}\]
Now, we can see that \[{{k}^{2}}+k+4\] will not have a real solution when it will be equated with 0, so the only value of k will be 1. The reason that \[{{k}^{2}}+k+4\] will not have any real solution is that the discriminant value of this quadratic equation is less than 0.
\[\begin{align}
& \Rightarrow k=1 \\
& \Rightarrow x-\dfrac{1}{x}=1 \\
& \Rightarrow \sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1 \\
\end{align}\]
Hence, the value of the given expression is 1.
Note: One may note that the expression \[\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\] will have only a real solution and that is why only one value of k was considered. Note that without rationalization we will not be able to solve this question as it will not be possible for us to find the cube root of \[2+\sqrt{5}\] and \[2-\sqrt{5}\]. You must remember the conditions for a quadratic equation to have real and imaginary roots.
Recently Updated Pages
Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Which is the largest Gulf in the world A Gulf of Aqaba class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

