Solve : $ {\log _x}\,2\, \times \,{\log _{\dfrac{x}{{16}}}}2\, = \,{\log _{\dfrac{x}{{64}}}}\,2 $
Last updated date: 23rd Mar 2023
•
Total views: 205.5k
•
Views today: 1.84k
Answer
205.5k+ views
Hint: The logarithm is the inverse function of exponentiation in mathematics. That is, the logarithm of a given number \[{\text{x}}\] is the exponent to which another fixed number, the base $ {\text{b}} $ , must be increased in order to obtain the number $ {\text{x}} $ . The logarithm counts the number of times the same element appears in repeated multiplication in the simplest case.
Complete step-by-step answer:
Consider the equation $ {\log _x}\,2\, \times \,{\log _{\dfrac{x}{{16}}}}2\, = \,{\log _{\dfrac{x}{{64}}}}\,2 $
The change of base rule of logarithms can be used to swap the base and number in any logarithmic term.
Hence, by interchanging the numbers and base in log terms, we get
$
\Rightarrow \,\dfrac{1}{{{{\log }_2}x}}\, \times \,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{16}}} \right)}}\,\, = \,\,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{64}}} \right)}} \\
\Rightarrow \,\dfrac{1}{{{{\log }_2}x\, \times \,{{\log }_2}\left( {\dfrac{x}{{16}}} \right)}}\,\, = \,\,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{64}}} \right)}} \;
$
On further solving, using logarithmic rules, we get
$
\Rightarrow \,{\log _2}\left( {\dfrac{x}{{64}}} \right)\,\, = \,\,{\log _2}x\,\, \times \,{\log _2}\left( {\dfrac{x}{{16}}} \right) \\
\Rightarrow \,{\log _2}x\, \times \,{\log _2}\left( {\dfrac{x}{{16}}} \right)\,\, = \,\,{\log _2}\left( {\dfrac{x}{{64}}} \right) \;
$
There are two logarithmic terms that contain quotient-form quantities. The quotient rule of logarithmic can be used to expand them.
$
\Rightarrow {\log _2}x\, \times \,\left( {{{\log }_2}x\, - \,{{\log }_2}16} \right)\,\, = \,\,{\log _2}x\, - \,{\log _2}64 \\
\Rightarrow {\left( {{{\log }_2}x} \right)^2}\, - \,\left( {{{\log }_2}{2^4}} \right)\,\, \times \,\left( {{{\log }_2}x} \right)\,\, = \,\,{\log _2}x\, - \,{\log _2}{2^6} \;
$
To simplify the logarithmic equation, we use the power rule of logarithms.
$ \Rightarrow {\left( {{{\log }_2}x} \right)^2}\, - \,\left( {4{{\log }_2}2} \right)\,\, \times \,\left( {{{\log }_2}x} \right)\,\, = \,\,{\log _2}x\, - \,6{\log _2}2 $
To simplify the equation even more, we use the logarithm of base law.
$
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,\left( {4\, \times 1} \right)\, \times \,\left( {{{\log }_2}x} \right)\, = \,{\log _2}x\, - \,6 \times 1 \\
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,4{\log _2}x\, = \,{\log _2}x\, - \,6 \;
$
On further solving we get,
$
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,4{\log _2}x\, - \,{\log _2}x\, + 6\, = \,0 \\
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - 5\,{\log _2}x\, + 6\, = \,0 \;
$
The above equation represents a quadratic equation. Hence, let us solve the quadratic equations and find the values.
Now, let us consider $ y\, = \,{\log _2}x $ , from logarithmic form, rewrite the equation in terms of $ y $ .
$
\Rightarrow \,{y^2}\, - 5y\, + \,6\, = \,0 \\
\Rightarrow \,{y^2}\, - 3y\,\, - \,2y + \,6\, = \,0 \;
$
On further solving we get,
$ \Rightarrow \,y - 3\, = \,0\, $ and $ y\, - \,2\, = \,0 $
$ \therefore \,\,y\, = \,3 $ and $ y\, = \,2 $
Hence, the values of $ y $ are $ 2 $ and $ 3 $ .
Replacing, the value for $ y $ , we get
$ \therefore \,\,{\log _2}x\, = \,2 $ and $ {\log _2}x\, = \,3 $
To get the value of $ x $ mathematically, we write each logarithmic equation in exponential notation.
$ \Rightarrow \,x\, = \,{2^2} $ and $ x\, = \,{2^3} $
$ \therefore \,\,\,x\, = \,4 $ and $ x\, = \,8 $
So, the correct answer is “ $ \therefore \,\,\,x\, = \,4 $ and $ x\, = \,8 $ ”.
Note: John Napier invented logarithms in 1614 as a way of simplifying calculations. Navigators, scientists, engineers, surveyors, and others quickly embraced them to make high-accuracy computations easier. Logarithm tables can be used to replace repetitive multi-digit multiplication steps with table look-ups and easier addition.
Complete step-by-step answer:
Consider the equation $ {\log _x}\,2\, \times \,{\log _{\dfrac{x}{{16}}}}2\, = \,{\log _{\dfrac{x}{{64}}}}\,2 $
The change of base rule of logarithms can be used to swap the base and number in any logarithmic term.
Hence, by interchanging the numbers and base in log terms, we get
$
\Rightarrow \,\dfrac{1}{{{{\log }_2}x}}\, \times \,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{16}}} \right)}}\,\, = \,\,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{64}}} \right)}} \\
\Rightarrow \,\dfrac{1}{{{{\log }_2}x\, \times \,{{\log }_2}\left( {\dfrac{x}{{16}}} \right)}}\,\, = \,\,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{64}}} \right)}} \;
$
On further solving, using logarithmic rules, we get
$
\Rightarrow \,{\log _2}\left( {\dfrac{x}{{64}}} \right)\,\, = \,\,{\log _2}x\,\, \times \,{\log _2}\left( {\dfrac{x}{{16}}} \right) \\
\Rightarrow \,{\log _2}x\, \times \,{\log _2}\left( {\dfrac{x}{{16}}} \right)\,\, = \,\,{\log _2}\left( {\dfrac{x}{{64}}} \right) \;
$
There are two logarithmic terms that contain quotient-form quantities. The quotient rule of logarithmic can be used to expand them.
$
\Rightarrow {\log _2}x\, \times \,\left( {{{\log }_2}x\, - \,{{\log }_2}16} \right)\,\, = \,\,{\log _2}x\, - \,{\log _2}64 \\
\Rightarrow {\left( {{{\log }_2}x} \right)^2}\, - \,\left( {{{\log }_2}{2^4}} \right)\,\, \times \,\left( {{{\log }_2}x} \right)\,\, = \,\,{\log _2}x\, - \,{\log _2}{2^6} \;
$
To simplify the logarithmic equation, we use the power rule of logarithms.
$ \Rightarrow {\left( {{{\log }_2}x} \right)^2}\, - \,\left( {4{{\log }_2}2} \right)\,\, \times \,\left( {{{\log }_2}x} \right)\,\, = \,\,{\log _2}x\, - \,6{\log _2}2 $
To simplify the equation even more, we use the logarithm of base law.
$
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,\left( {4\, \times 1} \right)\, \times \,\left( {{{\log }_2}x} \right)\, = \,{\log _2}x\, - \,6 \times 1 \\
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,4{\log _2}x\, = \,{\log _2}x\, - \,6 \;
$
On further solving we get,
$
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,4{\log _2}x\, - \,{\log _2}x\, + 6\, = \,0 \\
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - 5\,{\log _2}x\, + 6\, = \,0 \;
$
The above equation represents a quadratic equation. Hence, let us solve the quadratic equations and find the values.
Now, let us consider $ y\, = \,{\log _2}x $ , from logarithmic form, rewrite the equation in terms of $ y $ .
$
\Rightarrow \,{y^2}\, - 5y\, + \,6\, = \,0 \\
\Rightarrow \,{y^2}\, - 3y\,\, - \,2y + \,6\, = \,0 \;
$
On further solving we get,
$ \Rightarrow \,y - 3\, = \,0\, $ and $ y\, - \,2\, = \,0 $
$ \therefore \,\,y\, = \,3 $ and $ y\, = \,2 $
Hence, the values of $ y $ are $ 2 $ and $ 3 $ .
Replacing, the value for $ y $ , we get
$ \therefore \,\,{\log _2}x\, = \,2 $ and $ {\log _2}x\, = \,3 $
To get the value of $ x $ mathematically, we write each logarithmic equation in exponential notation.
$ \Rightarrow \,x\, = \,{2^2} $ and $ x\, = \,{2^3} $
$ \therefore \,\,\,x\, = \,4 $ and $ x\, = \,8 $
So, the correct answer is “ $ \therefore \,\,\,x\, = \,4 $ and $ x\, = \,8 $ ”.
Note: John Napier invented logarithms in 1614 as a way of simplifying calculations. Navigators, scientists, engineers, surveyors, and others quickly embraced them to make high-accuracy computations easier. Logarithm tables can be used to replace repetitive multi-digit multiplication steps with table look-ups and easier addition.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
