Answer
Verified
385.8k+ views
Hint: The logarithm is the inverse function of exponentiation in mathematics. That is, the logarithm of a given number \[{\text{x}}\] is the exponent to which another fixed number, the base $ {\text{b}} $ , must be increased in order to obtain the number $ {\text{x}} $ . The logarithm counts the number of times the same element appears in repeated multiplication in the simplest case.
Complete step-by-step answer:
Consider the equation $ {\log _x}\,2\, \times \,{\log _{\dfrac{x}{{16}}}}2\, = \,{\log _{\dfrac{x}{{64}}}}\,2 $
The change of base rule of logarithms can be used to swap the base and number in any logarithmic term.
Hence, by interchanging the numbers and base in log terms, we get
$
\Rightarrow \,\dfrac{1}{{{{\log }_2}x}}\, \times \,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{16}}} \right)}}\,\, = \,\,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{64}}} \right)}} \\
\Rightarrow \,\dfrac{1}{{{{\log }_2}x\, \times \,{{\log }_2}\left( {\dfrac{x}{{16}}} \right)}}\,\, = \,\,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{64}}} \right)}} \;
$
On further solving, using logarithmic rules, we get
$
\Rightarrow \,{\log _2}\left( {\dfrac{x}{{64}}} \right)\,\, = \,\,{\log _2}x\,\, \times \,{\log _2}\left( {\dfrac{x}{{16}}} \right) \\
\Rightarrow \,{\log _2}x\, \times \,{\log _2}\left( {\dfrac{x}{{16}}} \right)\,\, = \,\,{\log _2}\left( {\dfrac{x}{{64}}} \right) \;
$
There are two logarithmic terms that contain quotient-form quantities. The quotient rule of logarithmic can be used to expand them.
$
\Rightarrow {\log _2}x\, \times \,\left( {{{\log }_2}x\, - \,{{\log }_2}16} \right)\,\, = \,\,{\log _2}x\, - \,{\log _2}64 \\
\Rightarrow {\left( {{{\log }_2}x} \right)^2}\, - \,\left( {{{\log }_2}{2^4}} \right)\,\, \times \,\left( {{{\log }_2}x} \right)\,\, = \,\,{\log _2}x\, - \,{\log _2}{2^6} \;
$
To simplify the logarithmic equation, we use the power rule of logarithms.
$ \Rightarrow {\left( {{{\log }_2}x} \right)^2}\, - \,\left( {4{{\log }_2}2} \right)\,\, \times \,\left( {{{\log }_2}x} \right)\,\, = \,\,{\log _2}x\, - \,6{\log _2}2 $
To simplify the equation even more, we use the logarithm of base law.
$
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,\left( {4\, \times 1} \right)\, \times \,\left( {{{\log }_2}x} \right)\, = \,{\log _2}x\, - \,6 \times 1 \\
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,4{\log _2}x\, = \,{\log _2}x\, - \,6 \;
$
On further solving we get,
$
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,4{\log _2}x\, - \,{\log _2}x\, + 6\, = \,0 \\
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - 5\,{\log _2}x\, + 6\, = \,0 \;
$
The above equation represents a quadratic equation. Hence, let us solve the quadratic equations and find the values.
Now, let us consider $ y\, = \,{\log _2}x $ , from logarithmic form, rewrite the equation in terms of $ y $ .
$
\Rightarrow \,{y^2}\, - 5y\, + \,6\, = \,0 \\
\Rightarrow \,{y^2}\, - 3y\,\, - \,2y + \,6\, = \,0 \;
$
On further solving we get,
$ \Rightarrow \,y - 3\, = \,0\, $ and $ y\, - \,2\, = \,0 $
$ \therefore \,\,y\, = \,3 $ and $ y\, = \,2 $
Hence, the values of $ y $ are $ 2 $ and $ 3 $ .
Replacing, the value for $ y $ , we get
$ \therefore \,\,{\log _2}x\, = \,2 $ and $ {\log _2}x\, = \,3 $
To get the value of $ x $ mathematically, we write each logarithmic equation in exponential notation.
$ \Rightarrow \,x\, = \,{2^2} $ and $ x\, = \,{2^3} $
$ \therefore \,\,\,x\, = \,4 $ and $ x\, = \,8 $
So, the correct answer is “ $ \therefore \,\,\,x\, = \,4 $ and $ x\, = \,8 $ ”.
Note: John Napier invented logarithms in 1614 as a way of simplifying calculations. Navigators, scientists, engineers, surveyors, and others quickly embraced them to make high-accuracy computations easier. Logarithm tables can be used to replace repetitive multi-digit multiplication steps with table look-ups and easier addition.
Complete step-by-step answer:
Consider the equation $ {\log _x}\,2\, \times \,{\log _{\dfrac{x}{{16}}}}2\, = \,{\log _{\dfrac{x}{{64}}}}\,2 $
The change of base rule of logarithms can be used to swap the base and number in any logarithmic term.
Hence, by interchanging the numbers and base in log terms, we get
$
\Rightarrow \,\dfrac{1}{{{{\log }_2}x}}\, \times \,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{16}}} \right)}}\,\, = \,\,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{64}}} \right)}} \\
\Rightarrow \,\dfrac{1}{{{{\log }_2}x\, \times \,{{\log }_2}\left( {\dfrac{x}{{16}}} \right)}}\,\, = \,\,\dfrac{1}{{{{\log }_2}\left( {\dfrac{x}{{64}}} \right)}} \;
$
On further solving, using logarithmic rules, we get
$
\Rightarrow \,{\log _2}\left( {\dfrac{x}{{64}}} \right)\,\, = \,\,{\log _2}x\,\, \times \,{\log _2}\left( {\dfrac{x}{{16}}} \right) \\
\Rightarrow \,{\log _2}x\, \times \,{\log _2}\left( {\dfrac{x}{{16}}} \right)\,\, = \,\,{\log _2}\left( {\dfrac{x}{{64}}} \right) \;
$
There are two logarithmic terms that contain quotient-form quantities. The quotient rule of logarithmic can be used to expand them.
$
\Rightarrow {\log _2}x\, \times \,\left( {{{\log }_2}x\, - \,{{\log }_2}16} \right)\,\, = \,\,{\log _2}x\, - \,{\log _2}64 \\
\Rightarrow {\left( {{{\log }_2}x} \right)^2}\, - \,\left( {{{\log }_2}{2^4}} \right)\,\, \times \,\left( {{{\log }_2}x} \right)\,\, = \,\,{\log _2}x\, - \,{\log _2}{2^6} \;
$
To simplify the logarithmic equation, we use the power rule of logarithms.
$ \Rightarrow {\left( {{{\log }_2}x} \right)^2}\, - \,\left( {4{{\log }_2}2} \right)\,\, \times \,\left( {{{\log }_2}x} \right)\,\, = \,\,{\log _2}x\, - \,6{\log _2}2 $
To simplify the equation even more, we use the logarithm of base law.
$
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,\left( {4\, \times 1} \right)\, \times \,\left( {{{\log }_2}x} \right)\, = \,{\log _2}x\, - \,6 \times 1 \\
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,4{\log _2}x\, = \,{\log _2}x\, - \,6 \;
$
On further solving we get,
$
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - \,4{\log _2}x\, - \,{\log _2}x\, + 6\, = \,0 \\
\Rightarrow \,{\left( {{{\log }_2}x} \right)^2}\, - 5\,{\log _2}x\, + 6\, = \,0 \;
$
The above equation represents a quadratic equation. Hence, let us solve the quadratic equations and find the values.
Now, let us consider $ y\, = \,{\log _2}x $ , from logarithmic form, rewrite the equation in terms of $ y $ .
$
\Rightarrow \,{y^2}\, - 5y\, + \,6\, = \,0 \\
\Rightarrow \,{y^2}\, - 3y\,\, - \,2y + \,6\, = \,0 \;
$
On further solving we get,
$ \Rightarrow \,y - 3\, = \,0\, $ and $ y\, - \,2\, = \,0 $
$ \therefore \,\,y\, = \,3 $ and $ y\, = \,2 $
Hence, the values of $ y $ are $ 2 $ and $ 3 $ .
Replacing, the value for $ y $ , we get
$ \therefore \,\,{\log _2}x\, = \,2 $ and $ {\log _2}x\, = \,3 $
To get the value of $ x $ mathematically, we write each logarithmic equation in exponential notation.
$ \Rightarrow \,x\, = \,{2^2} $ and $ x\, = \,{2^3} $
$ \therefore \,\,\,x\, = \,4 $ and $ x\, = \,8 $
So, the correct answer is “ $ \therefore \,\,\,x\, = \,4 $ and $ x\, = \,8 $ ”.
Note: John Napier invented logarithms in 1614 as a way of simplifying calculations. Navigators, scientists, engineers, surveyors, and others quickly embraced them to make high-accuracy computations easier. Logarithm tables can be used to replace repetitive multi-digit multiplication steps with table look-ups and easier addition.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE