Answer
Verified
398.4k+ views
Hint:In the given question, we have been asked to find the value of ‘x’ and it is given that \[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]. In order to find the value of ‘x’, first we will apply the quotient property of logarithm which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\] . Then we need to apply the definition of logarithm, which states that \[\log \left( {{x}^{a}} \right)=a\log x\] and then simplify the equation further. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
● The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log
}_{b}}\left( \dfrac{m}{n} \right)\]
● The definition of logarithm, says that \[\log \left( {{x}^{a}} \right)=a\log x\]
Complete step by step solution:
We have given that,
\[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]
The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, i.e.
\[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\]
Applying the property in the above equation, we get
\[\Rightarrow \ln \left( \dfrac{{{x}^{7}}}{{{x}^{2}}} \right)=5\]
On simplifying the above equation, we get
\[\Rightarrow \ln \left( {{x}^{5}} \right)=5\]
By the definition of logarithm, i.e.
\[\log \left( {{x}^{a}} \right)=a\log x\]
Using this, we get
\[\Rightarrow 5\ln \left( x \right)=5\]
Multiplying both the sides of the equation by 5, we get
\[\Rightarrow \dfrac{5\ln \left( x \right)}{5}=\dfrac{5}{5}\]
On simplifying the above, we get
\[\Rightarrow \ln \left( x \right)=1\]
Therefore,
\[\Rightarrow x=e\]
Thus, the value of ‘x’ equals to ‘e’ is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
● The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, which states that \[{{\log }_{b}}m-{{\log }_{b}}n={{\log
}_{b}}\left( \dfrac{m}{n} \right)\]
● The definition of logarithm, says that \[\log \left( {{x}^{a}} \right)=a\log x\]
Complete step by step solution:
We have given that,
\[\ln \left( {{x}^{7}} \right)-\ln \left( {{x}^{2}} \right)=5\]
The properties of logarithm to combine two natural logs;
Using the quotient property of logarithm, i.e.
\[{{\log }_{b}}m-{{\log }_{b}}n={{\log }_{b}}\left( \dfrac{m}{n} \right)\]
Applying the property in the above equation, we get
\[\Rightarrow \ln \left( \dfrac{{{x}^{7}}}{{{x}^{2}}} \right)=5\]
On simplifying the above equation, we get
\[\Rightarrow \ln \left( {{x}^{5}} \right)=5\]
By the definition of logarithm, i.e.
\[\log \left( {{x}^{a}} \right)=a\log x\]
Using this, we get
\[\Rightarrow 5\ln \left( x \right)=5\]
Multiplying both the sides of the equation by 5, we get
\[\Rightarrow \dfrac{5\ln \left( x \right)}{5}=\dfrac{5}{5}\]
On simplifying the above, we get
\[\Rightarrow \ln \left( x \right)=1\]
Therefore,
\[\Rightarrow x=e\]
Thus, the value of ‘x’ equals to ‘e’ is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations