
Solve: $ \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 $
A. $ x\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cy=0 $
B. $ y\ln \left( \dfrac{x}{y} \right)-y+x\ln x+Cx=0 $
C. $ x\ln \left( \dfrac{x}{y} \right)-y+x\ln x+Cy=0 $
D. $ y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0 $
Answer
469.5k+ views
Hint: The given differential equation can be converted into a variable separable form by making the appropriate substitution $ y=vx $ . Separate the variables x and v and then integrate both sides to obtain the solution.
Recall some properties of the natural logarithm: $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , $ \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} $ and $ \int{\left( \ln x \right)dx}=x\left( \ln x \right)-x $ .
The rule for derivative of a product of two functions is: $ d(uv)=udv+vdu $ .
Complete step-by-step answer:
The given equation $ \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 $ is not yet variable separable.
Taking out y as common in the first term, we get:
⇒ $ \left[ x-y\left( \ln y-\ln x \right) \right]dx+x\left( \ln y-\ln x \right)dy=0 $
Using $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , we get:
⇒ $ \left[ x-y\ln \left( \dfrac{y}{x} \right) \right]dx+x\ln \left( \dfrac{y}{x} \right)dy=0 $
Since y is the dependent variable, let's substitute $ y=vx $ , where v is a function of x, and try to separate the variables:
⇒ $ \left[ x-vx\ln \left( \dfrac{vx}{x} \right) \right]dx+x\ln \left( \dfrac{vx}{x} \right)d(vx)=0 $
Using the rule of multiplication for derivatives $ d(uv)=udv+vdu $ , we get:
⇒ $ \left[ x-vx\ln v \right]dx+x\left( \ln v \right)(xdv+vdx)=0 $
On multiplying the terms and separating the variables, we get:
⇒ $ xdx-vx(\ln v)dx+{{x}^{2}}(\ln v)dv+vx(\ln v)dx=0 $
⇒ $ xdx+{{x}^{2}}(\ln v)dv=0 $
Dividing by $ {{x}^{2}} $ , we get:
⇒ $ \dfrac{dx}{x}+(\ln v)dv=0 $
The variables are separated. Now, integrating both sides, we get:
⇒ $ \ln x+\left( v\ln v-v \right)+C=0 $
⇒ $ \ln x+v\left( \ln v-1 \right)+C=0 $
Back substitution $ y=vx $ , we get:
⇒ $ \ln x+\left( \dfrac{y}{x} \right)\left[ ln\left( \dfrac{y}{x} \right)-1 \right]+C=0 $
Multiplying by x, we get:
⇒ $ x\ln x+y\ln \left( \dfrac{y}{x} \right)-y+Cx=0 $
The correct answer is D. $ y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0 $ .
Note: The linear differential equations are identified as variable separable, ordinary, homogenous or exact which aids in getting to know the required steps for solving them.
In general, a differential equation of the variable separable form, $ f(x)dx=g(y)dy $ , can be solved by simply integrating both the sides. Other types of differential equations can be converted into this form by either substitution or by multiplying with the integrating factors.
Recall some properties of the natural logarithm: $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , $ \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} $ and $ \int{\left( \ln x \right)dx}=x\left( \ln x \right)-x $ .
The rule for derivative of a product of two functions is: $ d(uv)=udv+vdu $ .
Complete step-by-step answer:
The given equation $ \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 $ is not yet variable separable.
Taking out y as common in the first term, we get:
⇒ $ \left[ x-y\left( \ln y-\ln x \right) \right]dx+x\left( \ln y-\ln x \right)dy=0 $
Using $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , we get:
⇒ $ \left[ x-y\ln \left( \dfrac{y}{x} \right) \right]dx+x\ln \left( \dfrac{y}{x} \right)dy=0 $
Since y is the dependent variable, let's substitute $ y=vx $ , where v is a function of x, and try to separate the variables:
⇒ $ \left[ x-vx\ln \left( \dfrac{vx}{x} \right) \right]dx+x\ln \left( \dfrac{vx}{x} \right)d(vx)=0 $
Using the rule of multiplication for derivatives $ d(uv)=udv+vdu $ , we get:
⇒ $ \left[ x-vx\ln v \right]dx+x\left( \ln v \right)(xdv+vdx)=0 $
On multiplying the terms and separating the variables, we get:
⇒ $ xdx-vx(\ln v)dx+{{x}^{2}}(\ln v)dv+vx(\ln v)dx=0 $
⇒ $ xdx+{{x}^{2}}(\ln v)dv=0 $
Dividing by $ {{x}^{2}} $ , we get:
⇒ $ \dfrac{dx}{x}+(\ln v)dv=0 $
The variables are separated. Now, integrating both sides, we get:
⇒ $ \ln x+\left( v\ln v-v \right)+C=0 $
⇒ $ \ln x+v\left( \ln v-1 \right)+C=0 $
Back substitution $ y=vx $ , we get:
⇒ $ \ln x+\left( \dfrac{y}{x} \right)\left[ ln\left( \dfrac{y}{x} \right)-1 \right]+C=0 $
Multiplying by x, we get:
⇒ $ x\ln x+y\ln \left( \dfrac{y}{x} \right)-y+Cx=0 $
The correct answer is D. $ y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0 $ .
Note: The linear differential equations are identified as variable separable, ordinary, homogenous or exact which aids in getting to know the required steps for solving them.
In general, a differential equation of the variable separable form, $ f(x)dx=g(y)dy $ , can be solved by simply integrating both the sides. Other types of differential equations can be converted into this form by either substitution or by multiplying with the integrating factors.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
