
Solve: $ \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 $
A. $ x\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cy=0 $
B. $ y\ln \left( \dfrac{x}{y} \right)-y+x\ln x+Cx=0 $
C. $ x\ln \left( \dfrac{x}{y} \right)-y+x\ln x+Cy=0 $
D. $ y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0 $
Answer
553.8k+ views
Hint: The given differential equation can be converted into a variable separable form by making the appropriate substitution $ y=vx $ . Separate the variables x and v and then integrate both sides to obtain the solution.
Recall some properties of the natural logarithm: $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , $ \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} $ and $ \int{\left( \ln x \right)dx}=x\left( \ln x \right)-x $ .
The rule for derivative of a product of two functions is: $ d(uv)=udv+vdu $ .
Complete step-by-step answer:
The given equation $ \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 $ is not yet variable separable.
Taking out y as common in the first term, we get:
⇒ $ \left[ x-y\left( \ln y-\ln x \right) \right]dx+x\left( \ln y-\ln x \right)dy=0 $
Using $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , we get:
⇒ $ \left[ x-y\ln \left( \dfrac{y}{x} \right) \right]dx+x\ln \left( \dfrac{y}{x} \right)dy=0 $
Since y is the dependent variable, let's substitute $ y=vx $ , where v is a function of x, and try to separate the variables:
⇒ $ \left[ x-vx\ln \left( \dfrac{vx}{x} \right) \right]dx+x\ln \left( \dfrac{vx}{x} \right)d(vx)=0 $
Using the rule of multiplication for derivatives $ d(uv)=udv+vdu $ , we get:
⇒ $ \left[ x-vx\ln v \right]dx+x\left( \ln v \right)(xdv+vdx)=0 $
On multiplying the terms and separating the variables, we get:
⇒ $ xdx-vx(\ln v)dx+{{x}^{2}}(\ln v)dv+vx(\ln v)dx=0 $
⇒ $ xdx+{{x}^{2}}(\ln v)dv=0 $
Dividing by $ {{x}^{2}} $ , we get:
⇒ $ \dfrac{dx}{x}+(\ln v)dv=0 $
The variables are separated. Now, integrating both sides, we get:
⇒ $ \ln x+\left( v\ln v-v \right)+C=0 $
⇒ $ \ln x+v\left( \ln v-1 \right)+C=0 $
Back substitution $ y=vx $ , we get:
⇒ $ \ln x+\left( \dfrac{y}{x} \right)\left[ ln\left( \dfrac{y}{x} \right)-1 \right]+C=0 $
Multiplying by x, we get:
⇒ $ x\ln x+y\ln \left( \dfrac{y}{x} \right)-y+Cx=0 $
The correct answer is D. $ y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0 $ .
Note: The linear differential equations are identified as variable separable, ordinary, homogenous or exact which aids in getting to know the required steps for solving them.
In general, a differential equation of the variable separable form, $ f(x)dx=g(y)dy $ , can be solved by simply integrating both the sides. Other types of differential equations can be converted into this form by either substitution or by multiplying with the integrating factors.
Recall some properties of the natural logarithm: $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , $ \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} $ and $ \int{\left( \ln x \right)dx}=x\left( \ln x \right)-x $ .
The rule for derivative of a product of two functions is: $ d(uv)=udv+vdu $ .
Complete step-by-step answer:
The given equation $ \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 $ is not yet variable separable.
Taking out y as common in the first term, we get:
⇒ $ \left[ x-y\left( \ln y-\ln x \right) \right]dx+x\left( \ln y-\ln x \right)dy=0 $
Using $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , we get:
⇒ $ \left[ x-y\ln \left( \dfrac{y}{x} \right) \right]dx+x\ln \left( \dfrac{y}{x} \right)dy=0 $
Since y is the dependent variable, let's substitute $ y=vx $ , where v is a function of x, and try to separate the variables:
⇒ $ \left[ x-vx\ln \left( \dfrac{vx}{x} \right) \right]dx+x\ln \left( \dfrac{vx}{x} \right)d(vx)=0 $
Using the rule of multiplication for derivatives $ d(uv)=udv+vdu $ , we get:
⇒ $ \left[ x-vx\ln v \right]dx+x\left( \ln v \right)(xdv+vdx)=0 $
On multiplying the terms and separating the variables, we get:
⇒ $ xdx-vx(\ln v)dx+{{x}^{2}}(\ln v)dv+vx(\ln v)dx=0 $
⇒ $ xdx+{{x}^{2}}(\ln v)dv=0 $
Dividing by $ {{x}^{2}} $ , we get:
⇒ $ \dfrac{dx}{x}+(\ln v)dv=0 $
The variables are separated. Now, integrating both sides, we get:
⇒ $ \ln x+\left( v\ln v-v \right)+C=0 $
⇒ $ \ln x+v\left( \ln v-1 \right)+C=0 $
Back substitution $ y=vx $ , we get:
⇒ $ \ln x+\left( \dfrac{y}{x} \right)\left[ ln\left( \dfrac{y}{x} \right)-1 \right]+C=0 $
Multiplying by x, we get:
⇒ $ x\ln x+y\ln \left( \dfrac{y}{x} \right)-y+Cx=0 $
The correct answer is D. $ y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0 $ .
Note: The linear differential equations are identified as variable separable, ordinary, homogenous or exact which aids in getting to know the required steps for solving them.
In general, a differential equation of the variable separable form, $ f(x)dx=g(y)dy $ , can be solved by simply integrating both the sides. Other types of differential equations can be converted into this form by either substitution or by multiplying with the integrating factors.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

