
Solve: $ \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 $
A. $ x\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cy=0 $
B. $ y\ln \left( \dfrac{x}{y} \right)-y+x\ln x+Cx=0 $
C. $ x\ln \left( \dfrac{x}{y} \right)-y+x\ln x+Cy=0 $
D. $ y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0 $
Answer
564.6k+ views
Hint: The given differential equation can be converted into a variable separable form by making the appropriate substitution $ y=vx $ . Separate the variables x and v and then integrate both sides to obtain the solution.
Recall some properties of the natural logarithm: $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , $ \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} $ and $ \int{\left( \ln x \right)dx}=x\left( \ln x \right)-x $ .
The rule for derivative of a product of two functions is: $ d(uv)=udv+vdu $ .
Complete step-by-step answer:
The given equation $ \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 $ is not yet variable separable.
Taking out y as common in the first term, we get:
⇒ $ \left[ x-y\left( \ln y-\ln x \right) \right]dx+x\left( \ln y-\ln x \right)dy=0 $
Using $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , we get:
⇒ $ \left[ x-y\ln \left( \dfrac{y}{x} \right) \right]dx+x\ln \left( \dfrac{y}{x} \right)dy=0 $
Since y is the dependent variable, let's substitute $ y=vx $ , where v is a function of x, and try to separate the variables:
⇒ $ \left[ x-vx\ln \left( \dfrac{vx}{x} \right) \right]dx+x\ln \left( \dfrac{vx}{x} \right)d(vx)=0 $
Using the rule of multiplication for derivatives $ d(uv)=udv+vdu $ , we get:
⇒ $ \left[ x-vx\ln v \right]dx+x\left( \ln v \right)(xdv+vdx)=0 $
On multiplying the terms and separating the variables, we get:
⇒ $ xdx-vx(\ln v)dx+{{x}^{2}}(\ln v)dv+vx(\ln v)dx=0 $
⇒ $ xdx+{{x}^{2}}(\ln v)dv=0 $
Dividing by $ {{x}^{2}} $ , we get:
⇒ $ \dfrac{dx}{x}+(\ln v)dv=0 $
The variables are separated. Now, integrating both sides, we get:
⇒ $ \ln x+\left( v\ln v-v \right)+C=0 $
⇒ $ \ln x+v\left( \ln v-1 \right)+C=0 $
Back substitution $ y=vx $ , we get:
⇒ $ \ln x+\left( \dfrac{y}{x} \right)\left[ ln\left( \dfrac{y}{x} \right)-1 \right]+C=0 $
Multiplying by x, we get:
⇒ $ x\ln x+y\ln \left( \dfrac{y}{x} \right)-y+Cx=0 $
The correct answer is D. $ y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0 $ .
Note: The linear differential equations are identified as variable separable, ordinary, homogenous or exact which aids in getting to know the required steps for solving them.
In general, a differential equation of the variable separable form, $ f(x)dx=g(y)dy $ , can be solved by simply integrating both the sides. Other types of differential equations can be converted into this form by either substitution or by multiplying with the integrating factors.
Recall some properties of the natural logarithm: $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , $ \dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} $ and $ \int{\left( \ln x \right)dx}=x\left( \ln x \right)-x $ .
The rule for derivative of a product of two functions is: $ d(uv)=udv+vdu $ .
Complete step-by-step answer:
The given equation $ \left( x-y\ln y+y\ln x \right)dx+x\left( \ln y-\ln x \right)dy=0 $ is not yet variable separable.
Taking out y as common in the first term, we get:
⇒ $ \left[ x-y\left( \ln y-\ln x \right) \right]dx+x\left( \ln y-\ln x \right)dy=0 $
Using $ \ln \left( \dfrac{a}{b} \right)=\ln a-\ln b $ , we get:
⇒ $ \left[ x-y\ln \left( \dfrac{y}{x} \right) \right]dx+x\ln \left( \dfrac{y}{x} \right)dy=0 $
Since y is the dependent variable, let's substitute $ y=vx $ , where v is a function of x, and try to separate the variables:
⇒ $ \left[ x-vx\ln \left( \dfrac{vx}{x} \right) \right]dx+x\ln \left( \dfrac{vx}{x} \right)d(vx)=0 $
Using the rule of multiplication for derivatives $ d(uv)=udv+vdu $ , we get:
⇒ $ \left[ x-vx\ln v \right]dx+x\left( \ln v \right)(xdv+vdx)=0 $
On multiplying the terms and separating the variables, we get:
⇒ $ xdx-vx(\ln v)dx+{{x}^{2}}(\ln v)dv+vx(\ln v)dx=0 $
⇒ $ xdx+{{x}^{2}}(\ln v)dv=0 $
Dividing by $ {{x}^{2}} $ , we get:
⇒ $ \dfrac{dx}{x}+(\ln v)dv=0 $
The variables are separated. Now, integrating both sides, we get:
⇒ $ \ln x+\left( v\ln v-v \right)+C=0 $
⇒ $ \ln x+v\left( \ln v-1 \right)+C=0 $
Back substitution $ y=vx $ , we get:
⇒ $ \ln x+\left( \dfrac{y}{x} \right)\left[ ln\left( \dfrac{y}{x} \right)-1 \right]+C=0 $
Multiplying by x, we get:
⇒ $ x\ln x+y\ln \left( \dfrac{y}{x} \right)-y+Cx=0 $
The correct answer is D. $ y\ln \left( \dfrac{y}{x} \right)-y+x\ln x+Cx=0 $ .
Note: The linear differential equations are identified as variable separable, ordinary, homogenous or exact which aids in getting to know the required steps for solving them.
In general, a differential equation of the variable separable form, $ f(x)dx=g(y)dy $ , can be solved by simply integrating both the sides. Other types of differential equations can be converted into this form by either substitution or by multiplying with the integrating factors.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

