Answer
Verified
491.4k+ views
Hint: Find the value of x; take the value of \[\left( {{x}^{2}}-x \right)\]as t.
Find the roots of t and the substitute it in \[t={{x}^{2}}-x\].
Solve the quadratic equations formed and you will get 4 values of x.
Complete step-by-step answer:
Given \[\left( x-5 \right)\left( x-7 \right)\left( x+4 \right)\left( x+6 \right)=504\]
We can consider \[\left[ \left( x-5 \right)\left( x+4 \right) \right]\]together and \[\left[ \left( x-7 \right)\left( x+6 \right) \right]\].
Open the bracket and form a quadratic equation of the form\[a{{x}^{2}}+bx+c\].
\[\begin{align}
& \left[ \left( x-5 \right)\left( x+4 \right) \right]\left[ \left( x-7 \right)\left( x+6 \right) \right]=504-(1) \\
& \left( x-5 \right)\left( x+4 \right)={{x}^{2}}-5x+4x-20={{x}^{2}}-x-20 \\
& \left( x-7 \right)\left( x+6 \right)={{x}^{2}}-7x-6x-42={{x}^{2}}-x-42 \\
\end{align}\]
Put \[t={{x}^{2}}-x-(2)\]
\[\begin{align}
& \Rightarrow \left( t-20 \right)\left( t-42 \right)=504 \\
& \Rightarrow {{t}^{2}}-20t-42t+840-504=0 \\
& \Rightarrow {{t}^{2}}-62t+336=0-(3) \\
\end{align}\]
By substituting value of t in equation (1), we can simplify it to equation (3)
Now we get a quadratic equation \[{{t}^{2}}-62t+336=0\].
The general form \[a{{x}^{2}}+bx+c=0\], by comparing the general form and equation (3), we get
a=1, b=-62 and c=336
substituting these values in \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], quadratic formula we get the roots.
\[\begin{align}
& =\dfrac{-\left( -62 \right)\pm \sqrt{{{\left( -62 \right)}^{2}}-4\times 1\times 336}}{2}=\dfrac{62\pm \sqrt{3844-1344}}{2} \\
& =\dfrac{62\pm \sqrt{2500}}{2}=\dfrac{62\pm 50}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{62+50}{2} \right)\]and \[\left( \dfrac{62-50}{2} \right)\]= 56 and 6
\[\therefore \]Roots of t = 56 and 6
We know, \[t={{x}^{2}}-x\].
Put the values of t = 56.
\[\Rightarrow {{x}^{2}}-x-56=0-(4)\]
Now find the roots of equation (4) by using quadratic equation
a=1, b = -1, c = -56
\[\begin{align}
& =\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\times 1\times \left( -56 \right)}}{2}=\dfrac{-1\pm \sqrt{1+224}}{2} \\
& =\dfrac{1\pm \sqrt{225}}{2}=\dfrac{1\pm 15}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{1+15}{2} \right)\]and \[\left( \dfrac{1-15}{2} \right)\]= 8 and -7
Similarly, \[t={{x}^{2}}-x\] , put value of t = 6
\[\Rightarrow {{x}^{2}}-x-6=0\]
a = 1, b = -1, c = -6
\[\begin{align}
& =\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\times 1\times \left( -6 \right)}}{2}=\dfrac{-1\pm \sqrt{1+24}}{2} \\
& =\dfrac{1\pm \sqrt{25}}{2}=\dfrac{1\pm 5}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{1+5}{2} \right)\]and \[\left( \dfrac{1-5}{2} \right)\]= 3 and -2.
\[\therefore \]The values of x are 8, -7, 3 and -2.
Note: The pair to be multiplied should be chosen in a way that \[t={{x}^{2}}-x\]. Taking \[\left( x-5 \right)\left( x-7 \right)\]and \[\left( x+4 \right)\left( x+6 \right)\]won’t give the required answer. Therefore, we choose \[\left( x-5 \right)\left( x+4 \right)\]and \[\left( x-7 \right)\left( x+6 \right)\], while forming the equation to get the value of x. Solving the value of t to get the roots.
Find the roots of t and the substitute it in \[t={{x}^{2}}-x\].
Solve the quadratic equations formed and you will get 4 values of x.
Complete step-by-step answer:
Given \[\left( x-5 \right)\left( x-7 \right)\left( x+4 \right)\left( x+6 \right)=504\]
We can consider \[\left[ \left( x-5 \right)\left( x+4 \right) \right]\]together and \[\left[ \left( x-7 \right)\left( x+6 \right) \right]\].
Open the bracket and form a quadratic equation of the form\[a{{x}^{2}}+bx+c\].
\[\begin{align}
& \left[ \left( x-5 \right)\left( x+4 \right) \right]\left[ \left( x-7 \right)\left( x+6 \right) \right]=504-(1) \\
& \left( x-5 \right)\left( x+4 \right)={{x}^{2}}-5x+4x-20={{x}^{2}}-x-20 \\
& \left( x-7 \right)\left( x+6 \right)={{x}^{2}}-7x-6x-42={{x}^{2}}-x-42 \\
\end{align}\]
Put \[t={{x}^{2}}-x-(2)\]
\[\begin{align}
& \Rightarrow \left( t-20 \right)\left( t-42 \right)=504 \\
& \Rightarrow {{t}^{2}}-20t-42t+840-504=0 \\
& \Rightarrow {{t}^{2}}-62t+336=0-(3) \\
\end{align}\]
By substituting value of t in equation (1), we can simplify it to equation (3)
Now we get a quadratic equation \[{{t}^{2}}-62t+336=0\].
The general form \[a{{x}^{2}}+bx+c=0\], by comparing the general form and equation (3), we get
a=1, b=-62 and c=336
substituting these values in \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], quadratic formula we get the roots.
\[\begin{align}
& =\dfrac{-\left( -62 \right)\pm \sqrt{{{\left( -62 \right)}^{2}}-4\times 1\times 336}}{2}=\dfrac{62\pm \sqrt{3844-1344}}{2} \\
& =\dfrac{62\pm \sqrt{2500}}{2}=\dfrac{62\pm 50}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{62+50}{2} \right)\]and \[\left( \dfrac{62-50}{2} \right)\]= 56 and 6
\[\therefore \]Roots of t = 56 and 6
We know, \[t={{x}^{2}}-x\].
Put the values of t = 56.
\[\Rightarrow {{x}^{2}}-x-56=0-(4)\]
Now find the roots of equation (4) by using quadratic equation
a=1, b = -1, c = -56
\[\begin{align}
& =\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\times 1\times \left( -56 \right)}}{2}=\dfrac{-1\pm \sqrt{1+224}}{2} \\
& =\dfrac{1\pm \sqrt{225}}{2}=\dfrac{1\pm 15}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{1+15}{2} \right)\]and \[\left( \dfrac{1-15}{2} \right)\]= 8 and -7
Similarly, \[t={{x}^{2}}-x\] , put value of t = 6
\[\Rightarrow {{x}^{2}}-x-6=0\]
a = 1, b = -1, c = -6
\[\begin{align}
& =\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\times 1\times \left( -6 \right)}}{2}=\dfrac{-1\pm \sqrt{1+24}}{2} \\
& =\dfrac{1\pm \sqrt{25}}{2}=\dfrac{1\pm 5}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{1+5}{2} \right)\]and \[\left( \dfrac{1-5}{2} \right)\]= 3 and -2.
\[\therefore \]The values of x are 8, -7, 3 and -2.
Note: The pair to be multiplied should be chosen in a way that \[t={{x}^{2}}-x\]. Taking \[\left( x-5 \right)\left( x-7 \right)\]and \[\left( x+4 \right)\left( x+6 \right)\]won’t give the required answer. Therefore, we choose \[\left( x-5 \right)\left( x+4 \right)\]and \[\left( x-7 \right)\left( x+6 \right)\], while forming the equation to get the value of x. Solving the value of t to get the roots.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE