
Solve \[\left( x-5 \right)\left( x-7 \right)\left( x+4 \right)\left( x+6 \right)=504\].
Answer
621.3k+ views
Hint: Find the value of x; take the value of \[\left( {{x}^{2}}-x \right)\]as t.
Find the roots of t and the substitute it in \[t={{x}^{2}}-x\].
Solve the quadratic equations formed and you will get 4 values of x.
Complete step-by-step answer:
Given \[\left( x-5 \right)\left( x-7 \right)\left( x+4 \right)\left( x+6 \right)=504\]
We can consider \[\left[ \left( x-5 \right)\left( x+4 \right) \right]\]together and \[\left[ \left( x-7 \right)\left( x+6 \right) \right]\].
Open the bracket and form a quadratic equation of the form\[a{{x}^{2}}+bx+c\].
\[\begin{align}
& \left[ \left( x-5 \right)\left( x+4 \right) \right]\left[ \left( x-7 \right)\left( x+6 \right) \right]=504-(1) \\
& \left( x-5 \right)\left( x+4 \right)={{x}^{2}}-5x+4x-20={{x}^{2}}-x-20 \\
& \left( x-7 \right)\left( x+6 \right)={{x}^{2}}-7x-6x-42={{x}^{2}}-x-42 \\
\end{align}\]
Put \[t={{x}^{2}}-x-(2)\]
\[\begin{align}
& \Rightarrow \left( t-20 \right)\left( t-42 \right)=504 \\
& \Rightarrow {{t}^{2}}-20t-42t+840-504=0 \\
& \Rightarrow {{t}^{2}}-62t+336=0-(3) \\
\end{align}\]
By substituting value of t in equation (1), we can simplify it to equation (3)
Now we get a quadratic equation \[{{t}^{2}}-62t+336=0\].
The general form \[a{{x}^{2}}+bx+c=0\], by comparing the general form and equation (3), we get
a=1, b=-62 and c=336
substituting these values in \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], quadratic formula we get the roots.
\[\begin{align}
& =\dfrac{-\left( -62 \right)\pm \sqrt{{{\left( -62 \right)}^{2}}-4\times 1\times 336}}{2}=\dfrac{62\pm \sqrt{3844-1344}}{2} \\
& =\dfrac{62\pm \sqrt{2500}}{2}=\dfrac{62\pm 50}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{62+50}{2} \right)\]and \[\left( \dfrac{62-50}{2} \right)\]= 56 and 6
\[\therefore \]Roots of t = 56 and 6
We know, \[t={{x}^{2}}-x\].
Put the values of t = 56.
\[\Rightarrow {{x}^{2}}-x-56=0-(4)\]
Now find the roots of equation (4) by using quadratic equation
a=1, b = -1, c = -56
\[\begin{align}
& =\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\times 1\times \left( -56 \right)}}{2}=\dfrac{-1\pm \sqrt{1+224}}{2} \\
& =\dfrac{1\pm \sqrt{225}}{2}=\dfrac{1\pm 15}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{1+15}{2} \right)\]and \[\left( \dfrac{1-15}{2} \right)\]= 8 and -7
Similarly, \[t={{x}^{2}}-x\] , put value of t = 6
\[\Rightarrow {{x}^{2}}-x-6=0\]
a = 1, b = -1, c = -6
\[\begin{align}
& =\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\times 1\times \left( -6 \right)}}{2}=\dfrac{-1\pm \sqrt{1+24}}{2} \\
& =\dfrac{1\pm \sqrt{25}}{2}=\dfrac{1\pm 5}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{1+5}{2} \right)\]and \[\left( \dfrac{1-5}{2} \right)\]= 3 and -2.
\[\therefore \]The values of x are 8, -7, 3 and -2.
Note: The pair to be multiplied should be chosen in a way that \[t={{x}^{2}}-x\]. Taking \[\left( x-5 \right)\left( x-7 \right)\]and \[\left( x+4 \right)\left( x+6 \right)\]won’t give the required answer. Therefore, we choose \[\left( x-5 \right)\left( x+4 \right)\]and \[\left( x-7 \right)\left( x+6 \right)\], while forming the equation to get the value of x. Solving the value of t to get the roots.
Find the roots of t and the substitute it in \[t={{x}^{2}}-x\].
Solve the quadratic equations formed and you will get 4 values of x.
Complete step-by-step answer:
Given \[\left( x-5 \right)\left( x-7 \right)\left( x+4 \right)\left( x+6 \right)=504\]
We can consider \[\left[ \left( x-5 \right)\left( x+4 \right) \right]\]together and \[\left[ \left( x-7 \right)\left( x+6 \right) \right]\].
Open the bracket and form a quadratic equation of the form\[a{{x}^{2}}+bx+c\].
\[\begin{align}
& \left[ \left( x-5 \right)\left( x+4 \right) \right]\left[ \left( x-7 \right)\left( x+6 \right) \right]=504-(1) \\
& \left( x-5 \right)\left( x+4 \right)={{x}^{2}}-5x+4x-20={{x}^{2}}-x-20 \\
& \left( x-7 \right)\left( x+6 \right)={{x}^{2}}-7x-6x-42={{x}^{2}}-x-42 \\
\end{align}\]
Put \[t={{x}^{2}}-x-(2)\]
\[\begin{align}
& \Rightarrow \left( t-20 \right)\left( t-42 \right)=504 \\
& \Rightarrow {{t}^{2}}-20t-42t+840-504=0 \\
& \Rightarrow {{t}^{2}}-62t+336=0-(3) \\
\end{align}\]
By substituting value of t in equation (1), we can simplify it to equation (3)
Now we get a quadratic equation \[{{t}^{2}}-62t+336=0\].
The general form \[a{{x}^{2}}+bx+c=0\], by comparing the general form and equation (3), we get
a=1, b=-62 and c=336
substituting these values in \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], quadratic formula we get the roots.
\[\begin{align}
& =\dfrac{-\left( -62 \right)\pm \sqrt{{{\left( -62 \right)}^{2}}-4\times 1\times 336}}{2}=\dfrac{62\pm \sqrt{3844-1344}}{2} \\
& =\dfrac{62\pm \sqrt{2500}}{2}=\dfrac{62\pm 50}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{62+50}{2} \right)\]and \[\left( \dfrac{62-50}{2} \right)\]= 56 and 6
\[\therefore \]Roots of t = 56 and 6
We know, \[t={{x}^{2}}-x\].
Put the values of t = 56.
\[\Rightarrow {{x}^{2}}-x-56=0-(4)\]
Now find the roots of equation (4) by using quadratic equation
a=1, b = -1, c = -56
\[\begin{align}
& =\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\times 1\times \left( -56 \right)}}{2}=\dfrac{-1\pm \sqrt{1+224}}{2} \\
& =\dfrac{1\pm \sqrt{225}}{2}=\dfrac{1\pm 15}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{1+15}{2} \right)\]and \[\left( \dfrac{1-15}{2} \right)\]= 8 and -7
Similarly, \[t={{x}^{2}}-x\] , put value of t = 6
\[\Rightarrow {{x}^{2}}-x-6=0\]
a = 1, b = -1, c = -6
\[\begin{align}
& =\dfrac{-\left( -1 \right)\pm \sqrt{{{\left( -1 \right)}^{2}}-4\times 1\times \left( -6 \right)}}{2}=\dfrac{-1\pm \sqrt{1+24}}{2} \\
& =\dfrac{1\pm \sqrt{25}}{2}=\dfrac{1\pm 5}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{1+5}{2} \right)\]and \[\left( \dfrac{1-5}{2} \right)\]= 3 and -2.
\[\therefore \]The values of x are 8, -7, 3 and -2.
Note: The pair to be multiplied should be chosen in a way that \[t={{x}^{2}}-x\]. Taking \[\left( x-5 \right)\left( x-7 \right)\]and \[\left( x+4 \right)\left( x+6 \right)\]won’t give the required answer. Therefore, we choose \[\left( x-5 \right)\left( x+4 \right)\]and \[\left( x-7 \right)\left( x+6 \right)\], while forming the equation to get the value of x. Solving the value of t to get the roots.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

