How do you solve \[{{\left( \ln x \right)}^{2}}=\ln \left( {{x}^{2}} \right)\]?
Answer
Verified
438.6k+ views
Hint:In the given question we have been asked to find the value of ‘x’ and it is given that \[{{\left( \ln x \right)}^{2}}=\ln \left( {{x}^{2}} \right)\]. In order to solve the question, first we need to use the basic property of logarithms i.e. \[\ln \left( {{a}^{b}} \right)=b\ln \left( x \right)\] and \[{{\log }_{b}}\left( x \right)=y\] is equivalent to\[{{b}^{y}}=x\]. Then we simplify the equation further to get the possible values of ‘x’.
Formula used:
\[\ln \left( {{a}^{b}} \right)=b\ln \left( x \right)\]
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\] is equivalent to \[{{b}^{y}}=x\].
Complete step by step solution:
We have given that,
\[{{\left( \ln x \right)}^{2}}=\ln \left( {{x}^{2}} \right)\]
As, we know that,
\[\ln \left( {{a}^{b}} \right)=b\ln \left( x \right)\]
Applying this in the given equation, we get
\[\Rightarrow {{\left( \ln x \right)}^{2}}=2\ln \left( x \right)\]
Substitute ln (x) = k,
Now, solving the equation, we get
\[\Rightarrow {{k}^{2}}=2k\]
Write the above equation in the standard form, we get
\[\Rightarrow {{k}^{2}}-2k=0\]
Taking out ‘k’ as a common factor, we get
\[\Rightarrow k\times \left( k-2 \right)=0\]
Solving each term individually, we get
\[\Rightarrow k=0\] And \[k-2=0\]
\[\Rightarrow k=0\] And \[k=2\]
Now, undo the substitution i.e. k = ln (x), we get
\[\Rightarrow \ln \left( x \right)=0\] and \[\ln \left( x \right)=2\]
Now, solving
\[\Rightarrow \ln \left( x \right)=0\]
Using the definition of log,
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\]is equivalent to\[{{b}^{y}}=x\].
\[\Rightarrow {{e}^{0}}=x\]
\[\Rightarrow x=1\]
Similarly, solving
\[\Rightarrow \ln \left( x \right)=2\]
\[\Rightarrow {{e}^{2}}=x\]
\[\Rightarrow x={{e}^{2}}\]
Therefore, the possible values of ‘x’ are 1 and \[{{e}^{2}}\].
It is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always require to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Formula used:
\[\ln \left( {{a}^{b}} \right)=b\ln \left( x \right)\]
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\] is equivalent to \[{{b}^{y}}=x\].
Complete step by step solution:
We have given that,
\[{{\left( \ln x \right)}^{2}}=\ln \left( {{x}^{2}} \right)\]
As, we know that,
\[\ln \left( {{a}^{b}} \right)=b\ln \left( x \right)\]
Applying this in the given equation, we get
\[\Rightarrow {{\left( \ln x \right)}^{2}}=2\ln \left( x \right)\]
Substitute ln (x) = k,
Now, solving the equation, we get
\[\Rightarrow {{k}^{2}}=2k\]
Write the above equation in the standard form, we get
\[\Rightarrow {{k}^{2}}-2k=0\]
Taking out ‘k’ as a common factor, we get
\[\Rightarrow k\times \left( k-2 \right)=0\]
Solving each term individually, we get
\[\Rightarrow k=0\] And \[k-2=0\]
\[\Rightarrow k=0\] And \[k=2\]
Now, undo the substitution i.e. k = ln (x), we get
\[\Rightarrow \ln \left( x \right)=0\] and \[\ln \left( x \right)=2\]
Now, solving
\[\Rightarrow \ln \left( x \right)=0\]
Using the definition of log,
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\]is equivalent to\[{{b}^{y}}=x\].
\[\Rightarrow {{e}^{0}}=x\]
\[\Rightarrow x=1\]
Similarly, solving
\[\Rightarrow \ln \left( x \right)=2\]
\[\Rightarrow {{e}^{2}}=x\]
\[\Rightarrow x={{e}^{2}}\]
Therefore, the possible values of ‘x’ are 1 and \[{{e}^{2}}\].
It is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always require to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE