Answer
Verified
426k+ views
Hint: The above question is based on the concept of equations having variables on both the sides in the form of quadratic equations. The main approach towards solving the problem is to the sum of squares of two terms on the right-hand side and the left-hand side of the equation and then further simplifying it and getting the value of x.
Complete step by step solution:
In the above given equation, it contains variables on both sides. We first need to solve the sum of squares of two terms present on the left-hand side and right-hand side.
The formula for sum of squares of two terms a and b are as follows:
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
Now applying this to the left-hand side we get,
\[{\left( {2x + 1} \right)^2} = 4{x^2} + 4x + 1\]
And then applying it to the term present in the right-hand side we get,
\[{\left( {x + 2} \right)^2} = {x^2} + 4x + 4\]
Now equating both the terms of left-hand side and right-hand side we get,
\[4{x^2} + 4x + 1 = {x^2} + 4x + 4\]
Now subtracting with the term \[{x^2}\] on both the side s we get,
\[
\Rightarrow 4{x^2} + 4x + 1 - {x^2} = {x^2} + 4x + 4 - {x^2} \\
\Rightarrow 3{x^2} + 4x + 1 = 4x + 4 \\
\]
Now subtracting 4x on both the sides we get ,
\[3{x^2} + 1 = 4\]
Then again subtract it with 4
$
\Rightarrow 3{x^2} + 1 - 4 = 4 - 4 \\
\Rightarrow 3{x^2} - 3 = 0 \\
$
Now by getting the common factor out we get,
\[
\Rightarrow 3\left( {{x^2} - 1} \right) = 0 \\
\Rightarrow 3\left( {x + 1} \right)\left( {x - 1} \right) = 0 \\
\]
Now by equating each term with zero we get,
\[
x - 1 = 0 \Rightarrow x = 1 \\
x + 1 = 0 \Rightarrow x = - 1 \\
\]
Note: An important thing to note is that we get two values of x i.e. 1 and -1 .We can cross check the values whether it is correct or not by substituting the values 1 and -1 in the above equation and we get the same terms on the left hand and right hand side then the values are correct.
Complete step by step solution:
In the above given equation, it contains variables on both sides. We first need to solve the sum of squares of two terms present on the left-hand side and right-hand side.
The formula for sum of squares of two terms a and b are as follows:
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
Now applying this to the left-hand side we get,
\[{\left( {2x + 1} \right)^2} = 4{x^2} + 4x + 1\]
And then applying it to the term present in the right-hand side we get,
\[{\left( {x + 2} \right)^2} = {x^2} + 4x + 4\]
Now equating both the terms of left-hand side and right-hand side we get,
\[4{x^2} + 4x + 1 = {x^2} + 4x + 4\]
Now subtracting with the term \[{x^2}\] on both the side s we get,
\[
\Rightarrow 4{x^2} + 4x + 1 - {x^2} = {x^2} + 4x + 4 - {x^2} \\
\Rightarrow 3{x^2} + 4x + 1 = 4x + 4 \\
\]
Now subtracting 4x on both the sides we get ,
\[3{x^2} + 1 = 4\]
Then again subtract it with 4
$
\Rightarrow 3{x^2} + 1 - 4 = 4 - 4 \\
\Rightarrow 3{x^2} - 3 = 0 \\
$
Now by getting the common factor out we get,
\[
\Rightarrow 3\left( {{x^2} - 1} \right) = 0 \\
\Rightarrow 3\left( {x + 1} \right)\left( {x - 1} \right) = 0 \\
\]
Now by equating each term with zero we get,
\[
x - 1 = 0 \Rightarrow x = 1 \\
x + 1 = 0 \Rightarrow x = - 1 \\
\]
Note: An important thing to note is that we get two values of x i.e. 1 and -1 .We can cross check the values whether it is correct or not by substituting the values 1 and -1 in the above equation and we get the same terms on the left hand and right hand side then the values are correct.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE