
Solve \[\int {\dfrac{{\sin (2x)}}{{2{{\cos }^2}(x) + {{\sin }^2}(x)}}dx} = \]
A. \[ - \ln |{\sin ^2}(x) + 1| + c\]
B. \[\ln |{\cos ^2}(x) + 1| + c\]
C. \[ - \ln |{\cos ^2}(x) + 1| + c\]
D. \[\ln |1 + {\tan ^2}(x)| + c\]
Answer
504k+ views
Hint: This question involves multiple concepts like trigonometry and integration by substitution. These types are questions are easily solved by substituting the values to some functions, which simplify the whole equation.
Formula used:
The formulas involved in this question are:
\[{\cos ^2}(\theta ) + {\sin ^2}(\theta ) = 1\], where \[\theta \] can be any real number.
\[\Rightarrow \sin (2\theta ) = 2\sin (\theta )\cos (\theta )\], where \[\theta \] can be any real number.
\[\Rightarrow \int {\dfrac{{dx}}{x} = \ln |x|} + c\], where $c$ is an arbitrary constant.
Complete step by step answer:
Let us begin this question with the function we are given to integrate, i.e.,
\[ \Rightarrow \int {\dfrac{{\sin (2x)}}{{2{{\cos }^2}(x) + {{\sin }^2}(x)}}dx} \]
Now, by applying the trigonometric identity, \[{\cos ^2}(\theta ) + {\sin ^2}(\theta ) = 1\] we get,
\[ \Rightarrow \int {\dfrac{{\sin (2x)}}{{{{\cos }^2}(x) + 1}}dx} \]
Now, applying the trigonometric identity, \[\sin (2\theta ) = 2\sin (\theta )\cos (\theta )\] we get,
\[ \Rightarrow \int {\dfrac{{2\sin (x)\cos (x)}}{{{{\cos }^2}(x) + 1}}dx} \]
Now, let us make a substitution as shown below,
\[ \Rightarrow t = \cos (x)\]
Now, by differentiating both sides of the equation we get,
\[ \Rightarrow dt = - \sin (x)dx\]
Now, by replacing the values of cos(x) and dx in the integral we get,
\[ \Rightarrow \int {\dfrac{{2\sin (x)\cos (x)}}{{{{\cos }^2}(x) + 1}}dx} = - \int {\dfrac{{2t}}{{{t^2} + 1}}dt} \]
Again, making a substitution as shown below,
\[ \Rightarrow z = {t^2} + 1\]
Now, by differentiating both sides of the equation we get,
\[ \Rightarrow dz = 2tdt\]
Now, by replacing the value of z = t2+1 and dz = 2tdt we get,
\[ \Rightarrow - \int {\dfrac{{2t}}{{{t^2} + 1}}dt} = - \int {\dfrac{{dz}}{z}} \]
Now, the question is converted into an elementary form and can be differentiated using a primary method as shown below,
\[ \Rightarrow - \int {\dfrac{{dz}}{z}} = - \ln |z| + c\]
Now, by replacing the value of z in terms of t we get,
\[ \Rightarrow - \ln |{t^2} + 1| + c\]
And, by finally, replacing the value of t in terms of cos(x) we get,
\[ \therefore - \ln |{\cos ^2}(x) + 1| + c\]Where c is an arbitrary constant.
Thus, option C is the correct answer.
Note:The integration denotes the summation of discrete data. The integral is calculated to find the functions which will describe the area, displacement, volume, that occurs due to a collection of small data, which cannot be measured singularly. In a broad sense, in calculus, the idea of limit is used where algebra and geometry are implemented.
Formula used:
The formulas involved in this question are:
\[{\cos ^2}(\theta ) + {\sin ^2}(\theta ) = 1\], where \[\theta \] can be any real number.
\[\Rightarrow \sin (2\theta ) = 2\sin (\theta )\cos (\theta )\], where \[\theta \] can be any real number.
\[\Rightarrow \int {\dfrac{{dx}}{x} = \ln |x|} + c\], where $c$ is an arbitrary constant.
Complete step by step answer:
Let us begin this question with the function we are given to integrate, i.e.,
\[ \Rightarrow \int {\dfrac{{\sin (2x)}}{{2{{\cos }^2}(x) + {{\sin }^2}(x)}}dx} \]
Now, by applying the trigonometric identity, \[{\cos ^2}(\theta ) + {\sin ^2}(\theta ) = 1\] we get,
\[ \Rightarrow \int {\dfrac{{\sin (2x)}}{{{{\cos }^2}(x) + 1}}dx} \]
Now, applying the trigonometric identity, \[\sin (2\theta ) = 2\sin (\theta )\cos (\theta )\] we get,
\[ \Rightarrow \int {\dfrac{{2\sin (x)\cos (x)}}{{{{\cos }^2}(x) + 1}}dx} \]
Now, let us make a substitution as shown below,
\[ \Rightarrow t = \cos (x)\]
Now, by differentiating both sides of the equation we get,
\[ \Rightarrow dt = - \sin (x)dx\]
Now, by replacing the values of cos(x) and dx in the integral we get,
\[ \Rightarrow \int {\dfrac{{2\sin (x)\cos (x)}}{{{{\cos }^2}(x) + 1}}dx} = - \int {\dfrac{{2t}}{{{t^2} + 1}}dt} \]
Again, making a substitution as shown below,
\[ \Rightarrow z = {t^2} + 1\]
Now, by differentiating both sides of the equation we get,
\[ \Rightarrow dz = 2tdt\]
Now, by replacing the value of z = t2+1 and dz = 2tdt we get,
\[ \Rightarrow - \int {\dfrac{{2t}}{{{t^2} + 1}}dt} = - \int {\dfrac{{dz}}{z}} \]
Now, the question is converted into an elementary form and can be differentiated using a primary method as shown below,
\[ \Rightarrow - \int {\dfrac{{dz}}{z}} = - \ln |z| + c\]
Now, by replacing the value of z in terms of t we get,
\[ \Rightarrow - \ln |{t^2} + 1| + c\]
And, by finally, replacing the value of t in terms of cos(x) we get,
\[ \therefore - \ln |{\cos ^2}(x) + 1| + c\]Where c is an arbitrary constant.
Thus, option C is the correct answer.
Note:The integration denotes the summation of discrete data. The integral is calculated to find the functions which will describe the area, displacement, volume, that occurs due to a collection of small data, which cannot be measured singularly. In a broad sense, in calculus, the idea of limit is used where algebra and geometry are implemented.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

