Answer
Verified
414.3k+ views
Hint: In this question, we are given an algebraic expression containing two unknown variable quantities. We know that to find the value of “n” unknown variables, we need “n” number of equations. In the given algebraic expression, we have 2 unknown quantities but only one equation. As the unknown quantities are variable, we can get different values of one variable on putting different values of the other variable, that is, we can express one variable in terms of the other variable. As we are given the value of x, so we can find the value of y easily by putting the given value in the given expression.
Complete step-by-step solution:
We are given that \[3x + 2y = 24\]
And we are also given that $x = 5$
So, on putting this value of x in the above equation, we get –
$
3(5) + 2y = 24 \\
\Rightarrow 15 + 2y = 24 \\
$
To find the value of y, we will take 15 and 2 to the right-hand side and then apply the arithmetic operations.
$
\Rightarrow y = \dfrac{{24 - 15}}{2} \\
\Rightarrow y = \dfrac{9}{2} \\
$
Hence, when \[3x + 2y = 24\] and $x = 5$ , $y = \dfrac{9}{2}$ .
Note: The mathematical equations that are a combination of numerical values and alphabets are known as algebraic expressions. The alphabets represent some unknown quantities, the alphabets and numerical values are linked via arithmetic operations like addition, subtraction, multiplication and division. The answer obtained is a fraction that is already in simplified form. If the fraction obtained is not in simplified form, then we would cancel out the common factors present in the numerator and the denominator.
Complete step-by-step solution:
We are given that \[3x + 2y = 24\]
And we are also given that $x = 5$
So, on putting this value of x in the above equation, we get –
$
3(5) + 2y = 24 \\
\Rightarrow 15 + 2y = 24 \\
$
To find the value of y, we will take 15 and 2 to the right-hand side and then apply the arithmetic operations.
$
\Rightarrow y = \dfrac{{24 - 15}}{2} \\
\Rightarrow y = \dfrac{9}{2} \\
$
Hence, when \[3x + 2y = 24\] and $x = 5$ , $y = \dfrac{9}{2}$ .
Note: The mathematical equations that are a combination of numerical values and alphabets are known as algebraic expressions. The alphabets represent some unknown quantities, the alphabets and numerical values are linked via arithmetic operations like addition, subtraction, multiplication and division. The answer obtained is a fraction that is already in simplified form. If the fraction obtained is not in simplified form, then we would cancel out the common factors present in the numerator and the denominator.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE