Solve for $x$ in $2x + 3y = 6$.
Answer
Verified
435.6k+ views
Hint: The above given expression is an example of a two step equation. In order to solve it we need to manipulate the given equation in such a way that we should get $x$ by itself. In order to get $x$ by itself we can perform any arithmetic operations on both LHS and RHS equally at the same time such that the equality of the given equation doesn’t change.
Complete step by step solution:
Given
$2x + 3y = 6....................................\left( i \right)$
Now in order to solve the given equation we need to solve for $x$.
Such that we have to manipulate the given equation in terms of only $x$, which can be achieved by performing different arithmetic operations on both LHS and RHS equally.
So to isolate the $x$term from equation (i) first we have to subtract the term $3y$ from both LHS and RHS.
Such that:
\[
\Rightarrow 2x + 3y - 3y = 6 - 3y \\
\Rightarrow 2x = 6 - 3y.......................................\left( {ii} \right) \\
\]
Now to isolate the $x$ term from equation (ii) we have to divide 2 from both the LHS and RHS.
Such that:
$
\Rightarrow 2x = 6 - 3y \\
\Rightarrow \dfrac{{2x}}{2} = \dfrac{{6 - 3y}}{2} \\
\Rightarrow x = \dfrac{6}{2} - \dfrac{{3y}}{2}........................\left( {iii} \right) \\
$
Now on simplifying the RHS we can write:
$ \Rightarrow x = 3 - \dfrac{{3y}}{2}........................\left( {iv} \right)$
Therefore on solving $2x + 3y = 6$ we get \[x = 3 - \dfrac{{3y}}{2}\].
Note:
A two-step equation is an algebraic equation which can be solved in two steps. The equation is said to be true when we find the value of the variable which makes the equation true.
We can also check if the value of the variable that we got is true or not by substituting the value of the variable back into the equation and checking whether it satisfies the given equation or not.
Complete step by step solution:
Given
$2x + 3y = 6....................................\left( i \right)$
Now in order to solve the given equation we need to solve for $x$.
Such that we have to manipulate the given equation in terms of only $x$, which can be achieved by performing different arithmetic operations on both LHS and RHS equally.
So to isolate the $x$term from equation (i) first we have to subtract the term $3y$ from both LHS and RHS.
Such that:
\[
\Rightarrow 2x + 3y - 3y = 6 - 3y \\
\Rightarrow 2x = 6 - 3y.......................................\left( {ii} \right) \\
\]
Now to isolate the $x$ term from equation (ii) we have to divide 2 from both the LHS and RHS.
Such that:
$
\Rightarrow 2x = 6 - 3y \\
\Rightarrow \dfrac{{2x}}{2} = \dfrac{{6 - 3y}}{2} \\
\Rightarrow x = \dfrac{6}{2} - \dfrac{{3y}}{2}........................\left( {iii} \right) \\
$
Now on simplifying the RHS we can write:
$ \Rightarrow x = 3 - \dfrac{{3y}}{2}........................\left( {iv} \right)$
Therefore on solving $2x + 3y = 6$ we get \[x = 3 - \dfrac{{3y}}{2}\].
Note:
A two-step equation is an algebraic equation which can be solved in two steps. The equation is said to be true when we find the value of the variable which makes the equation true.
We can also check if the value of the variable that we got is true or not by substituting the value of the variable back into the equation and checking whether it satisfies the given equation or not.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE