Solve for x and y by using method of substitution:
$0.2x + 0.3y = 1.3,{\text{ }}0.4x + 0.5y = 2.3$
Last updated date: 20th Mar 2023
•
Total views: 303.6k
•
Views today: 4.83k
Answer
303.6k+ views
Hint – In this question there are given two equations involving two variables x and y. Use a method of substitution to find out the value of these two variables. In this method we try to find the value of any variable from any equation and put this value into another equation so, use this concept to reach the solution of the question.
Complete step by step solution:
Given equations
$0.2x + 0.3y = 1.3,{\text{ }}0.4x + 0.5y = 2.3$
Now multiply by 10 in given equations we have
$2x + 3y = 13$………………… (1)
$4x + 5y = 23$…………………………. (2)
Now use Substitution method to solve these equations
So, from equation (1) calculate the value of y we have,
$ \Rightarrow 3y = 13 - 2x$
Now divide by 3 we have,
$ \Rightarrow y = \dfrac{{13 - 2x}}{3}$
Now put this value of y in equation (2) we have,
$ \Rightarrow 4x + 5\left( {\dfrac{{13 - 2x}}{3}} \right) = 23$
Now simplify the above equation we have,
$ \Rightarrow 12x + 65 - 10x = 69$
$ \Rightarrow 2x = 4$
$ \Rightarrow x = 2$
Now substitute the value of x in equation (1) we have,
$ \Rightarrow 2 \times 2 + 3y = 13$
Now simplify the above equation we have,
$ \Rightarrow 3y = 13 - 4 = 9$
$ \Rightarrow y = \dfrac{9}{3} = 3$
So, x = 2 and y = 3 is the required solution of the equation.
Note – Whenever we face such types of problems the key concept is to use various methods of variable evaluation either by elimination or by substitution method. These methods will help in getting the right track to evaluate these equations involving two variables and reach the right solution.
Complete step by step solution:
Given equations
$0.2x + 0.3y = 1.3,{\text{ }}0.4x + 0.5y = 2.3$
Now multiply by 10 in given equations we have
$2x + 3y = 13$………………… (1)
$4x + 5y = 23$…………………………. (2)
Now use Substitution method to solve these equations
So, from equation (1) calculate the value of y we have,
$ \Rightarrow 3y = 13 - 2x$
Now divide by 3 we have,
$ \Rightarrow y = \dfrac{{13 - 2x}}{3}$
Now put this value of y in equation (2) we have,
$ \Rightarrow 4x + 5\left( {\dfrac{{13 - 2x}}{3}} \right) = 23$
Now simplify the above equation we have,
$ \Rightarrow 12x + 65 - 10x = 69$
$ \Rightarrow 2x = 4$
$ \Rightarrow x = 2$
Now substitute the value of x in equation (1) we have,
$ \Rightarrow 2 \times 2 + 3y = 13$
Now simplify the above equation we have,
$ \Rightarrow 3y = 13 - 4 = 9$
$ \Rightarrow y = \dfrac{9}{3} = 3$
So, x = 2 and y = 3 is the required solution of the equation.
Note – Whenever we face such types of problems the key concept is to use various methods of variable evaluation either by elimination or by substitution method. These methods will help in getting the right track to evaluate these equations involving two variables and reach the right solution.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
