
Solve for x:
\[2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}\]
Answer
609k+ views
Hint: Apply the tan on both the left hand side and right hand side. Now apply the formula for \[\tan 2\theta \]on the left hand side. Now use inverse trigonometric functions that is \[\tan \left( {{\tan }^{-1}}\theta \right)=\theta \]and use basic trigonometric identities to get \[\tan x\]and write the general solution of the equation \[\tan x=k\].
Complete step-by-step answer:
Given that \[2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}\]
Applying tan on both left hand side and right hand side we will get,
\[\tan \left( 2{{\tan }^{-1}}\left( \sin x \right) \right)=\tan \left( {{\tan }^{-1}}\left( 2\sec x \right) \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that the formula for \[\tan 2\theta \] is given by \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\]
\[\Rightarrow \dfrac{2\tan \left( {{\tan }^{-1}}\left( \sin x \right) \right)}{1-{{\tan }^{2}}\left( {{\tan }^{-1}}\left( \sin x \right) \right)}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[\Rightarrow \dfrac{2\sin x}{1-{{\sin }^{2}}x}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}=\dfrac{1}{\cos x}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
\[\Rightarrow \tan x=1\]
The general solution of \[\tan x=k\]is \[n\pi +\alpha \]
\[\Rightarrow x=n\pi +\dfrac{\pi }{4}\]
Note: The basic trigonometric identity is \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. Note that in the general solution of the equation \[\tan x=k\]which is \[n\pi +\alpha \]and value \[\alpha \]should be in the principal solution that is \[\alpha \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]. Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.
Complete step-by-step answer:
Given that \[2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}\]
Applying tan on both left hand side and right hand side we will get,
\[\tan \left( 2{{\tan }^{-1}}\left( \sin x \right) \right)=\tan \left( {{\tan }^{-1}}\left( 2\sec x \right) \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that the formula for \[\tan 2\theta \] is given by \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\]
\[\Rightarrow \dfrac{2\tan \left( {{\tan }^{-1}}\left( \sin x \right) \right)}{1-{{\tan }^{2}}\left( {{\tan }^{-1}}\left( \sin x \right) \right)}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[\Rightarrow \dfrac{2\sin x}{1-{{\sin }^{2}}x}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}=\dfrac{1}{\cos x}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
\[\Rightarrow \tan x=1\]
The general solution of \[\tan x=k\]is \[n\pi +\alpha \]
\[\Rightarrow x=n\pi +\dfrac{\pi }{4}\]
Note: The basic trigonometric identity is \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. Note that in the general solution of the equation \[\tan x=k\]which is \[n\pi +\alpha \]and value \[\alpha \]should be in the principal solution that is \[\alpha \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]. Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

