
Solve for x:
\[2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}\]
Answer
595.2k+ views
Hint: Apply the tan on both the left hand side and right hand side. Now apply the formula for \[\tan 2\theta \]on the left hand side. Now use inverse trigonometric functions that is \[\tan \left( {{\tan }^{-1}}\theta \right)=\theta \]and use basic trigonometric identities to get \[\tan x\]and write the general solution of the equation \[\tan x=k\].
Complete step-by-step answer:
Given that \[2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}\]
Applying tan on both left hand side and right hand side we will get,
\[\tan \left( 2{{\tan }^{-1}}\left( \sin x \right) \right)=\tan \left( {{\tan }^{-1}}\left( 2\sec x \right) \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that the formula for \[\tan 2\theta \] is given by \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\]
\[\Rightarrow \dfrac{2\tan \left( {{\tan }^{-1}}\left( \sin x \right) \right)}{1-{{\tan }^{2}}\left( {{\tan }^{-1}}\left( \sin x \right) \right)}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[\Rightarrow \dfrac{2\sin x}{1-{{\sin }^{2}}x}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}=\dfrac{1}{\cos x}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
\[\Rightarrow \tan x=1\]
The general solution of \[\tan x=k\]is \[n\pi +\alpha \]
\[\Rightarrow x=n\pi +\dfrac{\pi }{4}\]
Note: The basic trigonometric identity is \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. Note that in the general solution of the equation \[\tan x=k\]which is \[n\pi +\alpha \]and value \[\alpha \]should be in the principal solution that is \[\alpha \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]. Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.
Complete step-by-step answer:
Given that \[2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}\]
Applying tan on both left hand side and right hand side we will get,
\[\tan \left( 2{{\tan }^{-1}}\left( \sin x \right) \right)=\tan \left( {{\tan }^{-1}}\left( 2\sec x \right) \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that the formula for \[\tan 2\theta \] is given by \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\]
\[\Rightarrow \dfrac{2\tan \left( {{\tan }^{-1}}\left( \sin x \right) \right)}{1-{{\tan }^{2}}\left( {{\tan }^{-1}}\left( \sin x \right) \right)}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[\Rightarrow \dfrac{2\sin x}{1-{{\sin }^{2}}x}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}=\dfrac{1}{\cos x}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
\[\Rightarrow \tan x=1\]
The general solution of \[\tan x=k\]is \[n\pi +\alpha \]
\[\Rightarrow x=n\pi +\dfrac{\pi }{4}\]
Note: The basic trigonometric identity is \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. Note that in the general solution of the equation \[\tan x=k\]which is \[n\pi +\alpha \]and value \[\alpha \]should be in the principal solution that is \[\alpha \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]. Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

