
Solve for x:
\[2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}\]
Answer
514.5k+ views
Hint: Apply the tan on both the left hand side and right hand side. Now apply the formula for \[\tan 2\theta \]on the left hand side. Now use inverse trigonometric functions that is \[\tan \left( {{\tan }^{-1}}\theta \right)=\theta \]and use basic trigonometric identities to get \[\tan x\]and write the general solution of the equation \[\tan x=k\].
Complete step-by-step answer:
Given that \[2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}\]
Applying tan on both left hand side and right hand side we will get,
\[\tan \left( 2{{\tan }^{-1}}\left( \sin x \right) \right)=\tan \left( {{\tan }^{-1}}\left( 2\sec x \right) \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that the formula for \[\tan 2\theta \] is given by \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\]
\[\Rightarrow \dfrac{2\tan \left( {{\tan }^{-1}}\left( \sin x \right) \right)}{1-{{\tan }^{2}}\left( {{\tan }^{-1}}\left( \sin x \right) \right)}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[\Rightarrow \dfrac{2\sin x}{1-{{\sin }^{2}}x}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}=\dfrac{1}{\cos x}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
\[\Rightarrow \tan x=1\]
The general solution of \[\tan x=k\]is \[n\pi +\alpha \]
\[\Rightarrow x=n\pi +\dfrac{\pi }{4}\]
Note: The basic trigonometric identity is \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. Note that in the general solution of the equation \[\tan x=k\]which is \[n\pi +\alpha \]and value \[\alpha \]should be in the principal solution that is \[\alpha \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]. Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.
Complete step-by-step answer:
Given that \[2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}\]
Applying tan on both left hand side and right hand side we will get,
\[\tan \left( 2{{\tan }^{-1}}\left( \sin x \right) \right)=\tan \left( {{\tan }^{-1}}\left( 2\sec x \right) \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know that the formula for \[\tan 2\theta \] is given by \[\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }\]
\[\Rightarrow \dfrac{2\tan \left( {{\tan }^{-1}}\left( \sin x \right) \right)}{1-{{\tan }^{2}}\left( {{\tan }^{-1}}\left( \sin x \right) \right)}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[\Rightarrow \dfrac{2\sin x}{1-{{\sin }^{2}}x}=2\sec x\]. . . . . . . . . . . . . . . . . . . . . . . . . (3)
\[\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}=\dfrac{1}{\cos x}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
\[\Rightarrow \tan x=1\]
The general solution of \[\tan x=k\]is \[n\pi +\alpha \]
\[\Rightarrow x=n\pi +\dfrac{\pi }{4}\]
Note: The basic trigonometric identity is \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. Note that in the general solution of the equation \[\tan x=k\]which is \[n\pi +\alpha \]and value \[\alpha \]should be in the principal solution that is \[\alpha \in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]. Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE
