
How do you solve for $n$ in $\left( {9n + 4} \right) + \left( {3{n^2} - 0.75} \right) = 180$?
Answer
552.3k+ views
Hint:The general form of a quadratic equation is \[a{x^2} + bx + c = 0\], where $a \ne 0$. The values of $x$ which satisfy the equation are called the roots or the solutions. These roots can be real or imaginary. There are two ways to find solutions/roots of $x$– comparing method and discriminant method. Let us solve the given equation for the value of $n$ by quadratic formula.
Complete step by step solution:
Before solving this question, we will first have to convert the given equation into general form, then compare the given equation with the standard quadratic equation, which is$a{x^2} + bx + c = 0$,
where$a \ne 0$. After comparing both the equations with each other, we will have to find the values of $a, b$ and $c$. Next, we will have to substitute the obtained values in the quadratic formula.
Given is$\left( {9n + 4} \right) + \left( {3{n^2} - 0.75} \right) = 180$
Simplifying the equation,
$ \Rightarrow 3{n^2} + 9n + 4 - 0.75 - 180 = 0$
Since, $\left( {0.75 = \dfrac{{75}}{{100}} = \dfrac{3}{4}} \right)$
$ \Rightarrow 3{n^2} + 9n + 4 - \dfrac{3}{4} - 180 = 0$
Solving the constants, we get,
$4 - \dfrac{3}{4} - 180 = \dfrac{{16 - 3 - 360}}{4} = - \dfrac{{707}}{4}$
Now, we have
$ \Rightarrow 3{n^2} + 9n - \dfrac{{707}}{4} = 0$
Divide the entire equation by$3$and we get,
$ \Rightarrow {n^2} + 3n - \dfrac{{707}}{{12}} = 0$
Next, we use the quadratic formula. We know that quadratic formula is: $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Using the same we get,
$
\Rightarrow n = \dfrac{{ - 3 \pm \sqrt {{3^2} - 4\left( 1 \right)\left( { - \dfrac{{707}}{{12}}}
\right)} }}{{2\left( 3 \right)}} \\
\Rightarrow n = - \dfrac{3}{2} \pm \sqrt {\dfrac{{367}}{6}} \\
\Rightarrow n = - \dfrac{3}{2} \pm \dfrac{{\sqrt {2202} }}{6} \\
$
So, the two values of $n$ we get are,
$
{n_1} = \dfrac{{\sqrt {2202} - 9}}{6} \\
{n_2} = - \dfrac{1}{6}\left( {9 + \sqrt {2202} } \right) \\
$
Therefore, the values of $n$ are $\dfrac{{\sqrt {2202} - 9}}{6}$ and $ - \dfrac{1}{6}\left( {9 + \sqrt {2202} } \right)$.
Note: In the quadratic formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$, the expression $\sqrt {{b^2} - 4ac} $ is called discriminant and is often denoted by $D$. Now, depending upon the quadratic equation, the value of discriminant changes and therefore, the value of roots also change. If $D$ is positive or greater than zero, then the two roots of the equation are real. If $D$ is zero, then roots are real but if $D$ is negative or less than zero, then roots are not real.
Complete step by step solution:
Before solving this question, we will first have to convert the given equation into general form, then compare the given equation with the standard quadratic equation, which is$a{x^2} + bx + c = 0$,
where$a \ne 0$. After comparing both the equations with each other, we will have to find the values of $a, b$ and $c$. Next, we will have to substitute the obtained values in the quadratic formula.
Given is$\left( {9n + 4} \right) + \left( {3{n^2} - 0.75} \right) = 180$
Simplifying the equation,
$ \Rightarrow 3{n^2} + 9n + 4 - 0.75 - 180 = 0$
Since, $\left( {0.75 = \dfrac{{75}}{{100}} = \dfrac{3}{4}} \right)$
$ \Rightarrow 3{n^2} + 9n + 4 - \dfrac{3}{4} - 180 = 0$
Solving the constants, we get,
$4 - \dfrac{3}{4} - 180 = \dfrac{{16 - 3 - 360}}{4} = - \dfrac{{707}}{4}$
Now, we have
$ \Rightarrow 3{n^2} + 9n - \dfrac{{707}}{4} = 0$
Divide the entire equation by$3$and we get,
$ \Rightarrow {n^2} + 3n - \dfrac{{707}}{{12}} = 0$
Next, we use the quadratic formula. We know that quadratic formula is: $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Using the same we get,
$
\Rightarrow n = \dfrac{{ - 3 \pm \sqrt {{3^2} - 4\left( 1 \right)\left( { - \dfrac{{707}}{{12}}}
\right)} }}{{2\left( 3 \right)}} \\
\Rightarrow n = - \dfrac{3}{2} \pm \sqrt {\dfrac{{367}}{6}} \\
\Rightarrow n = - \dfrac{3}{2} \pm \dfrac{{\sqrt {2202} }}{6} \\
$
So, the two values of $n$ we get are,
$
{n_1} = \dfrac{{\sqrt {2202} - 9}}{6} \\
{n_2} = - \dfrac{1}{6}\left( {9 + \sqrt {2202} } \right) \\
$
Therefore, the values of $n$ are $\dfrac{{\sqrt {2202} - 9}}{6}$ and $ - \dfrac{1}{6}\left( {9 + \sqrt {2202} } \right)$.
Note: In the quadratic formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$, the expression $\sqrt {{b^2} - 4ac} $ is called discriminant and is often denoted by $D$. Now, depending upon the quadratic equation, the value of discriminant changes and therefore, the value of roots also change. If $D$ is positive or greater than zero, then the two roots of the equation are real. If $D$ is zero, then roots are real but if $D$ is negative or less than zero, then roots are not real.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

