Answer
Verified
424.8k+ views
Hint:In the given equation, $I$ is given in terms of $E$, $n$ , $r$ and $R$. Solving for $n$ here means rearranging the given equation and writing $n$ in terms of all other variables in the equation. For this, $n$ is to be shifted to LHS and other variables to RHS such that $n$ becomes the dependent variable, the value of which depends on the other independent variables, i.e.,$E$, $I$ , $r$ and $R$.
Complete step by step solution:
Given equation is $I = \dfrac{{nE}}{{nr + R}}$
Since $n$ is on the RHS, we first interchange the terms of LHS and RHS. We get,
$\dfrac{{nE}}{{nr + R}} = I$
Now, we multiply both sides by\[(nr + R)\] to get:
$ \Rightarrow \dfrac{{nE}}{{(nr + R)}} \times (nr + R) = I \times (nr + R)$
We find that the expression$(nr + R)$appears both in the numerator and the denominator on the LHS, which would yield the value of 1. Thus, we get:
$ \Rightarrow nE = I \times (nr + R)$
Applying distributive property on the RHS, we get:
$ \Rightarrow nE = Inr + IR$
Subtracting the expression $Inr$ from both sides, we get:
$
\Rightarrow nE - Inr = Inr + IR - Inr \\
\Rightarrow nE - Inr = IR \\
$
Taking \[n\] common from both the terms in the LHS, we get:
$ \Rightarrow n(E - Ir) = IR$
Now, we divide both sides by $(E - Ir)$. Here we have to realise that the expression $(E - Ir)$is a non- zero number because dividing a number by zero gives an undefined result.
Thus, we get:
\[ \Rightarrow \dfrac{{n(E - Ir)}}{{(E - Ir)}} = \dfrac{{IR}}{{(E - Ir)}}\]
We find that the expression $(E - Ir)$ appears both in the numerator and the denominator on the LHS, which would yield the value of 1. Thus, we get:
\[ \Rightarrow n = \dfrac{{IR}}{{(E - Ir)}}\]
From this equation, we get $n$ in terms of the variables $E$ , $I$ , $r$ and $R$. Knowing the value of $$ , $I$ , $r$ and $R$, we can solve the above equation to get the value of $n$.
Additional Information:
The given equation is the formula to calculate current $I$ in an electric circuit having electric potential $E$ with $n$ number of resistors with resistance $R$ connected in parallel to each other which in turn is connected in series with a resistor of resistance $r$.
Note: Here, we have assumed that$(E - Ir) \ne 0$. If$(E - Ir) = 0$, the value of $n$ will become undefined as any expression or number divided by $0$is undefined. Writing $n$ in terms of other variables means $n$ is the dependent variable which is dependent on independent variables $E$ ,$I$ , $r$ and $R$.
Complete step by step solution:
Given equation is $I = \dfrac{{nE}}{{nr + R}}$
Since $n$ is on the RHS, we first interchange the terms of LHS and RHS. We get,
$\dfrac{{nE}}{{nr + R}} = I$
Now, we multiply both sides by\[(nr + R)\] to get:
$ \Rightarrow \dfrac{{nE}}{{(nr + R)}} \times (nr + R) = I \times (nr + R)$
We find that the expression$(nr + R)$appears both in the numerator and the denominator on the LHS, which would yield the value of 1. Thus, we get:
$ \Rightarrow nE = I \times (nr + R)$
Applying distributive property on the RHS, we get:
$ \Rightarrow nE = Inr + IR$
Subtracting the expression $Inr$ from both sides, we get:
$
\Rightarrow nE - Inr = Inr + IR - Inr \\
\Rightarrow nE - Inr = IR \\
$
Taking \[n\] common from both the terms in the LHS, we get:
$ \Rightarrow n(E - Ir) = IR$
Now, we divide both sides by $(E - Ir)$. Here we have to realise that the expression $(E - Ir)$is a non- zero number because dividing a number by zero gives an undefined result.
Thus, we get:
\[ \Rightarrow \dfrac{{n(E - Ir)}}{{(E - Ir)}} = \dfrac{{IR}}{{(E - Ir)}}\]
We find that the expression $(E - Ir)$ appears both in the numerator and the denominator on the LHS, which would yield the value of 1. Thus, we get:
\[ \Rightarrow n = \dfrac{{IR}}{{(E - Ir)}}\]
From this equation, we get $n$ in terms of the variables $E$ , $I$ , $r$ and $R$. Knowing the value of $$ , $I$ , $r$ and $R$, we can solve the above equation to get the value of $n$.
Additional Information:
The given equation is the formula to calculate current $I$ in an electric circuit having electric potential $E$ with $n$ number of resistors with resistance $R$ connected in parallel to each other which in turn is connected in series with a resistor of resistance $r$.
Note: Here, we have assumed that$(E - Ir) \ne 0$. If$(E - Ir) = 0$, the value of $n$ will become undefined as any expression or number divided by $0$is undefined. Writing $n$ in terms of other variables means $n$ is the dependent variable which is dependent on independent variables $E$ ,$I$ , $r$ and $R$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE