
Solve for every value of n, ${1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)$, n is a natural number
Answer
513k+ views
Hint-Use mathematical induction. It is a mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number.
We prove the above relation by principle of mathematical induction. This technique involves two steps to prove a statement.
Step 1-It proves that a statement is true for the initial value.
Step 2-It proves that if the statement is true for the nth number then it is also true for (n+1)th number.
Let $p\left( n \right) = {1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)$
For n=1
$LHS = {1^2} = 1$
$
RHS = \dfrac{{\left( 1 \right)\left( {1 + 1} \right)\left( {2 \times 1 + 1} \right)}}{6} \\
\Rightarrow RHS = \dfrac{{1 \times 2 \times 3}}{6} = 1 \\
$
$LHS = RHS$
P(n) is true for n=1
So, It proves that a statement is true for the initial value.
Now, we Assume that P(k) is true
\[{1^2} + {2^2} + {3^2} + ............ + {\left( {k - 1} \right)^2} + {k^2} = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right)}}{6}\]
Now, we have to prove that P(k+1) is true
$
{1^2} + {2^2} + {3^2} + ............ + {k^2} + {\left( {k + 1} \right)^2} = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} \\
LHS = {1^2} + {2^2} + {3^2} + ............ + {k^2} + {\left( {k + 1} \right)^2} \\
\Rightarrow LHS = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right)}}{6} + {\left( {k + 1} \right)^2} \\
\Rightarrow LHS = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right) + 6{{\left( {k + 1} \right)}^2}}}{6} \\
$
Take common (k+1)
$
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {k\left( {2k + 1} \right) + 6\left( {k + 1} \right)} \right)}}{6} \\
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {2{k^2} + 7k + 6} \right)}}{6} \\
$
Now factories
$
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} \\
LHS = RHS \\
$
It is proved that P(k+1) is true. So, we can say P(k) is also true.
So, Hence proved ${1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)$ for every value of n, n is a natural number.
Note-Whenever we face such types of problems we use some important points. First check the statement for initial value (n=1) .If it is proved then we assume the statement is true for (n=k) .So, statement is also true for (n=k+1).
We prove the above relation by principle of mathematical induction. This technique involves two steps to prove a statement.
Step 1-It proves that a statement is true for the initial value.
Step 2-It proves that if the statement is true for the nth number then it is also true for (n+1)th number.
Let $p\left( n \right) = {1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)$
For n=1
$LHS = {1^2} = 1$
$
RHS = \dfrac{{\left( 1 \right)\left( {1 + 1} \right)\left( {2 \times 1 + 1} \right)}}{6} \\
\Rightarrow RHS = \dfrac{{1 \times 2 \times 3}}{6} = 1 \\
$
$LHS = RHS$
P(n) is true for n=1
So, It proves that a statement is true for the initial value.
Now, we Assume that P(k) is true
\[{1^2} + {2^2} + {3^2} + ............ + {\left( {k - 1} \right)^2} + {k^2} = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right)}}{6}\]
Now, we have to prove that P(k+1) is true
$
{1^2} + {2^2} + {3^2} + ............ + {k^2} + {\left( {k + 1} \right)^2} = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} \\
LHS = {1^2} + {2^2} + {3^2} + ............ + {k^2} + {\left( {k + 1} \right)^2} \\
\Rightarrow LHS = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right)}}{6} + {\left( {k + 1} \right)^2} \\
\Rightarrow LHS = \dfrac{{\left( k \right)\left( {k + 1} \right)\left( {2k + 1} \right) + 6{{\left( {k + 1} \right)}^2}}}{6} \\
$
Take common (k+1)
$
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {k\left( {2k + 1} \right) + 6\left( {k + 1} \right)} \right)}}{6} \\
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {2{k^2} + 7k + 6} \right)}}{6} \\
$
Now factories
$
\Rightarrow LHS = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} \\
LHS = RHS \\
$
It is proved that P(k+1) is true. So, we can say P(k) is also true.
So, Hence proved ${1^2} + {2^2} + {3^2} + ............ + {n^2} = \dfrac{1}{6}\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)$ for every value of n, n is a natural number.
Note-Whenever we face such types of problems we use some important points. First check the statement for initial value (n=1) .If it is proved then we assume the statement is true for (n=k) .So, statement is also true for (n=k+1).
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
