
How do you solve \[\dfrac{1}{4}n+12\ge \dfrac{3}{4}n-4\] and graph the solution on a number line?
Answer
538.2k+ views
Hint: Multiply both the sides of the given inequality with 4 to remove the fractional terms. Do not change the inequality sign. Now, simplify the inequation by rearranging the terms, take the terms containing the variable ‘n’ to the left-hand side and the constant terms to the right-hand side. Simplify both the sides with simple addition and subtraction. Make the coefficient of n equal to 1 and change the direction of inequality if you divide or multiply both the sides with a negative number. Show the set of values of ‘n’ on a number line extending from \[-\infty \] to \[\infty \].
Complete step-by-step solution:
Here, we have been provided with the inequality \[\dfrac{1}{4}n+12\ge \dfrac{3}{4}n-4\] and we are asked to solve it and represent it on a number line. So, let us solve the values of n.
\[\because \dfrac{1}{4}n+12\ge \dfrac{3}{4}n-4\]
Multiplying both the sides with 4, we get,
\[\Rightarrow n+48\ge 3n-16\]
Here, as you can see that the direction of inequality does not change, this is because we have multiplied both the sides with a positive number.
Now, rearranging the terms by taking the terms containing the variable ‘n’ to the L.H.S. and the constant terms to the R.H.S., we get,
\[\begin{align}
& \Rightarrow n-3n\ge -48-16 \\
& \Rightarrow -2n\ge -64 \\
\end{align}\]
Dividing both the sides with (-2), we get,
\[\Rightarrow n\le 32\]
As you can see here the direction of inequality gets reversed, this is because we have divided both the sides with a negative number.
Hence, our solution is \[n\le 32\]. This can be represented in interval or set form as \[n\in \left( -\infty ,32 \right]\].
Now, let us represent the solution set of ‘n’ on a number line. Since, a number line extends from \[-\infty \] to \[\infty \], so marking the value 32 on it we have, n must be less than or equal to 32.
Hence, the above number line represents our answer.
Note: One may note that we have a closed interval on 32 and an open interval on \[-\infty \], this is because the value of ‘n’ can also be 32. The value of n is tending to \[-\infty \], since \[\infty \] and \[-\infty \] are not real numbers so we use an open interval while writing them in set form. Now, if we are asked to draw the graph of \[n\le 32\] then we will consider n equal to x on a cartesian plane and shade the left part of the line x = 32 as our answer. You must remember the rules of changing the direction of inequality sign otherwise you may get the wrong answer.
Complete step-by-step solution:
Here, we have been provided with the inequality \[\dfrac{1}{4}n+12\ge \dfrac{3}{4}n-4\] and we are asked to solve it and represent it on a number line. So, let us solve the values of n.
\[\because \dfrac{1}{4}n+12\ge \dfrac{3}{4}n-4\]
Multiplying both the sides with 4, we get,
\[\Rightarrow n+48\ge 3n-16\]
Here, as you can see that the direction of inequality does not change, this is because we have multiplied both the sides with a positive number.
Now, rearranging the terms by taking the terms containing the variable ‘n’ to the L.H.S. and the constant terms to the R.H.S., we get,
\[\begin{align}
& \Rightarrow n-3n\ge -48-16 \\
& \Rightarrow -2n\ge -64 \\
\end{align}\]
Dividing both the sides with (-2), we get,
\[\Rightarrow n\le 32\]
As you can see here the direction of inequality gets reversed, this is because we have divided both the sides with a negative number.
Hence, our solution is \[n\le 32\]. This can be represented in interval or set form as \[n\in \left( -\infty ,32 \right]\].
Now, let us represent the solution set of ‘n’ on a number line. Since, a number line extends from \[-\infty \] to \[\infty \], so marking the value 32 on it we have, n must be less than or equal to 32.
Hence, the above number line represents our answer.
Note: One may note that we have a closed interval on 32 and an open interval on \[-\infty \], this is because the value of ‘n’ can also be 32. The value of n is tending to \[-\infty \], since \[\infty \] and \[-\infty \] are not real numbers so we use an open interval while writing them in set form. Now, if we are asked to draw the graph of \[n\le 32\] then we will consider n equal to x on a cartesian plane and shade the left part of the line x = 32 as our answer. You must remember the rules of changing the direction of inequality sign otherwise you may get the wrong answer.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

