
Solve $\cos 3x+\cos 2x=\sin \left( \dfrac{3x}{2} \right)+\sin \left( \dfrac{x}{2} \right),0\le x<2\pi $.
Answer
606.9k+ views
Hint: We will first start by collecting the terms of cosine on one side and sine on other terms. Then we will use the formula that,
\[\begin{align}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
\end{align}\]
and simplify to find the answer.
Complete step-by-step answer:
Now, we have been given that the value of $\cos 3x+\cos 2x=\sin \left( \dfrac{3x}{2} \right)+\sin \left( \dfrac{x}{2} \right)$ for $0\le x<2\pi $.
Now, we know the trigonometric identity that,
\[\begin{align}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
\end{align}\]
So, we have the equation as,
$\begin{align}
& 2\cos \left( \dfrac{5x}{2} \right)\cos \left( \dfrac{x}{2} \right)=2\sin \left( \dfrac{4x}{4} \right)\cos \left( \dfrac{x}{2} \right) \\
& \cos \left( \dfrac{5x}{2} \right)\cos \left( \dfrac{x}{2} \right)=\sin \left( x \right)\cos \left( \dfrac{x}{2} \right) \\
\end{align}$
Now, we can rewrite it as,
$\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{5x}{2} \right)-\cos \left( \dfrac{x}{2} \right)\sin \left( x \right)=0$
Now, we will take $\cos \dfrac{x}{2}$ common in equation. So, we have,
$\cos \left( \dfrac{x}{2} \right)\left\{ \cos \left( \dfrac{5x}{2} \right)-\sin \left( x \right) \right\}=0$
Now, we have either $\cos \left( \dfrac{x}{2} \right)=0\ or\ \cos \left( \dfrac{5x}{2} \right)-\sin \left( x \right)=0$.
Now, we know the trigonometric identity that,
$\begin{align}
& \sin \left( x \right)=\cos \left( \dfrac{\pi }{2}-x \right) \\
& \Rightarrow \cos \left( \dfrac{x}{2} \right)=0 \\
& \cos \left( \dfrac{5x}{2} \right)-\cos \left( \dfrac{\pi }{2}-x \right)=0 \\
\end{align}$
Now, we know that if $\cos x=\cos \theta $ then $x=2n\pi \pm \theta $.
Therefore, we have the values as,
$\cos \left( \dfrac{x}{2} \right)=0\ or\ \cos \dfrac{5x}{2}=\cos \left( \dfrac{\pi }{2}-x \right)$
Now, since we know that $\cos \dfrac{\pi }{2}=0$. Therefore,
$\begin{align}
& \cos \dfrac{x}{2}=\cos \dfrac{\pi }{2} \\
& \dfrac{x}{2}=2n\pi \pm \dfrac{\pi }{2}\ for\ n\in \mathcal{Z}............\left( 1 \right) \\
\end{align}$
Similarly, we have,
$\dfrac{5x}{2}=2n\pi \pm \left( \dfrac{\pi }{2}-x \right)\ for\ n\in N.........\left( 2 \right)$
We will taking positive sign,
$\begin{align}
& \dfrac{5x}{2}=2n\pi +\dfrac{\pi }{2}-x \\
& \dfrac{5x}{2}+x=2n\pi +\dfrac{\pi }{2} \\
& \dfrac{5x+2x}{2}=\dfrac{4n\pi +\pi }{2} \\
& \dfrac{7x}{2}=\dfrac{\pi \left( 4n+1 \right)}{2} \\
& 7x=\pi \left( 4n+1 \right) \\
& x=\dfrac{\left( 4n+1 \right)\pi }{7} \\
\end{align}$
Now, for $n=0,1,2,3$we have,
\[x=\dfrac{\pi }{7},\dfrac{5\pi }{7},\dfrac{9\pi }{7},\dfrac{13\pi }{7}\]
Now, if we take negative in (2). So, we have,
$\begin{align}
& \dfrac{5x}{2}=2n\pi -\dfrac{\pi }{2}+x \\
& \dfrac{5x}{2}-x=\dfrac{\pi \left( 4n-1 \right)}{2} \\
& \dfrac{5x-2x}{2}=\dfrac{\pi \left( 4n-1 \right)}{2} \\
& \dfrac{3x}{2}=\dfrac{\pi \left( 4n-1 \right)}{2} \\
& x=\dfrac{\pi }{3}\left( 4n-1 \right) \\
\end{align}$
Now, if we put n = 1, we have,
$x=\dfrac{\pi }{3}\left( 3 \right)=\pi $
Now, from (1) we have,
$\dfrac{x}{2}=2n\pi \pm \dfrac{\pi }{2}$
Now, if we put n = 0, so we have,
$\begin{align}
& \dfrac{x}{2}=\pm \dfrac{\pi }{2} \\
& x=\pm \pi \\
\end{align}$
Now, since we have given $0\le x<2\pi $. Therefore, x can’t be negative. Hence, the value of x is $\pi $.
Now, total values of x are,
\[\dfrac{\pi }{7},\dfrac{5\pi }{7},\dfrac{9\pi }{7},\dfrac{13\pi }{7},\pi \]
Note: It is important to note that there are infinitely many solutions for $\sin x=\sin \theta $. But since we have been given that $0\le x<2\pi $ therefore, we have to limit the values in this range out of all the values.
\[\begin{align}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
\end{align}\]
and simplify to find the answer.
Complete step-by-step answer:
Now, we have been given that the value of $\cos 3x+\cos 2x=\sin \left( \dfrac{3x}{2} \right)+\sin \left( \dfrac{x}{2} \right)$ for $0\le x<2\pi $.
Now, we know the trigonometric identity that,
\[\begin{align}
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
\end{align}\]
So, we have the equation as,
$\begin{align}
& 2\cos \left( \dfrac{5x}{2} \right)\cos \left( \dfrac{x}{2} \right)=2\sin \left( \dfrac{4x}{4} \right)\cos \left( \dfrac{x}{2} \right) \\
& \cos \left( \dfrac{5x}{2} \right)\cos \left( \dfrac{x}{2} \right)=\sin \left( x \right)\cos \left( \dfrac{x}{2} \right) \\
\end{align}$
Now, we can rewrite it as,
$\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{5x}{2} \right)-\cos \left( \dfrac{x}{2} \right)\sin \left( x \right)=0$
Now, we will take $\cos \dfrac{x}{2}$ common in equation. So, we have,
$\cos \left( \dfrac{x}{2} \right)\left\{ \cos \left( \dfrac{5x}{2} \right)-\sin \left( x \right) \right\}=0$
Now, we have either $\cos \left( \dfrac{x}{2} \right)=0\ or\ \cos \left( \dfrac{5x}{2} \right)-\sin \left( x \right)=0$.
Now, we know the trigonometric identity that,
$\begin{align}
& \sin \left( x \right)=\cos \left( \dfrac{\pi }{2}-x \right) \\
& \Rightarrow \cos \left( \dfrac{x}{2} \right)=0 \\
& \cos \left( \dfrac{5x}{2} \right)-\cos \left( \dfrac{\pi }{2}-x \right)=0 \\
\end{align}$
Now, we know that if $\cos x=\cos \theta $ then $x=2n\pi \pm \theta $.
Therefore, we have the values as,
$\cos \left( \dfrac{x}{2} \right)=0\ or\ \cos \dfrac{5x}{2}=\cos \left( \dfrac{\pi }{2}-x \right)$
Now, since we know that $\cos \dfrac{\pi }{2}=0$. Therefore,
$\begin{align}
& \cos \dfrac{x}{2}=\cos \dfrac{\pi }{2} \\
& \dfrac{x}{2}=2n\pi \pm \dfrac{\pi }{2}\ for\ n\in \mathcal{Z}............\left( 1 \right) \\
\end{align}$
Similarly, we have,
$\dfrac{5x}{2}=2n\pi \pm \left( \dfrac{\pi }{2}-x \right)\ for\ n\in N.........\left( 2 \right)$
We will taking positive sign,
$\begin{align}
& \dfrac{5x}{2}=2n\pi +\dfrac{\pi }{2}-x \\
& \dfrac{5x}{2}+x=2n\pi +\dfrac{\pi }{2} \\
& \dfrac{5x+2x}{2}=\dfrac{4n\pi +\pi }{2} \\
& \dfrac{7x}{2}=\dfrac{\pi \left( 4n+1 \right)}{2} \\
& 7x=\pi \left( 4n+1 \right) \\
& x=\dfrac{\left( 4n+1 \right)\pi }{7} \\
\end{align}$
Now, for $n=0,1,2,3$we have,
\[x=\dfrac{\pi }{7},\dfrac{5\pi }{7},\dfrac{9\pi }{7},\dfrac{13\pi }{7}\]
Now, if we take negative in (2). So, we have,
$\begin{align}
& \dfrac{5x}{2}=2n\pi -\dfrac{\pi }{2}+x \\
& \dfrac{5x}{2}-x=\dfrac{\pi \left( 4n-1 \right)}{2} \\
& \dfrac{5x-2x}{2}=\dfrac{\pi \left( 4n-1 \right)}{2} \\
& \dfrac{3x}{2}=\dfrac{\pi \left( 4n-1 \right)}{2} \\
& x=\dfrac{\pi }{3}\left( 4n-1 \right) \\
\end{align}$
Now, if we put n = 1, we have,
$x=\dfrac{\pi }{3}\left( 3 \right)=\pi $
Now, from (1) we have,
$\dfrac{x}{2}=2n\pi \pm \dfrac{\pi }{2}$
Now, if we put n = 0, so we have,
$\begin{align}
& \dfrac{x}{2}=\pm \dfrac{\pi }{2} \\
& x=\pm \pi \\
\end{align}$
Now, since we have given $0\le x<2\pi $. Therefore, x can’t be negative. Hence, the value of x is $\pi $.
Now, total values of x are,
\[\dfrac{\pi }{7},\dfrac{5\pi }{7},\dfrac{9\pi }{7},\dfrac{13\pi }{7},\pi \]
Note: It is important to note that there are infinitely many solutions for $\sin x=\sin \theta $. But since we have been given that $0\le x<2\pi $ therefore, we have to limit the values in this range out of all the values.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

